The adipocyte-derived secretory factor adiponectin promotes insulin sensitivity,
decreases inflammation and promotes cell survival. To date, no unifying mechanism explains how
adiponectin can exert such a variety of beneficial systemic effects. Here, we show that
adiponectin potently stimulates a ceramidase activity associated with its two receptors,
adipoR1 and adipoR2, and enhances ceramide catabolism and formation of its anti-apoptotic
metabolite – sphingosine-1-phosphate (S1P), independently of AMPK. Using models of
inducible apoptosis in pancreatic β-cells and cardiomyocytes, we show that transgenic
overproduction of adiponectin decreases caspase-8 mediated death, while genetic adiponectin
ablation enhances apoptosis in vivo through a sphingolipid-mediated pathway.
Ceramidase activity is impaired in cells lacking both adiponectin receptor isoforms, leading to
elevated ceramide levels and enhanced susceptibility to palmitate-induced cell death. Combined,
our observations suggest a novel unifying mechanism of action for the beneficial systemic
effects exerted by adiponectin, with sphingolipid metabolism as its core upstream
component.
Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.
Nearly all stress stimuli (e.g., inflammatory cytokines, glucocorticoids, chemotherapeutics, etc.) induce sphingolipid synthesis, leading to the accumulation of ceramides and ceramide metabolites. While the role of these lipids in the regulation of cell growth and death has been studied extensively, recent studies suggest that a primary consequence of ceramide accumulation is an alteration in metabolism. In both cell-autonomous systems and complex organisms, ceramides modify intracellular signaling pathways to slow anabolism, ensuring that catabolism ensues. These ceramide actions have important implications for diseases associated with obesity, such as diabetes and cardiovascular disease.
Conflict of interest:The authors have declared that no conflict of interest exists.Citation for this article:
Background:Fenretinide, an in-trial chemotherapeutic, improves insulin sensitivity in mice and humans. Results: Fenretinide reduces Des1 expression and prevents ceramide accumulation, while protecting against lipid-induced insulin resistance. Conclusion: Fenretinide decreases ceramide biosynthesis, and increases levels of dihydroceramides, thus preserving insulin responsiveness. Significance: These data suggest that Des1 may be a viable therapeutic target for normalizing glucose homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.