The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.
Using signal level measurements from commercial microwave links (CMLs) has proven to be a valuable tool for near-ground 2-D rain mapping. Such mapping is commonly based on spatial interpolation methods, where each CML is considered as a point measurement instrument located at its center. The validity of the resulted maps is tested against radar observations. However, since radar has limitations, accuracy of CML-based reconstructed rain maps remains unclear. Here we provide a quantitative comparison of the performance of CML-based spatial interpolation methods for rain mapping by conducting a systematic analysis: first by quantifying the performance of maps generated from semi-synthetic CML data, and thereafter turning to real-data analysis of the same rain events. A radar product of the GermanWeather Service, serves as ground truth for generating semi-synthetic data, in which several temporal aggregations of the radar rainfall fields are used to create different decorrelation distances. The study was done over an area of 225X245 km2 in southern Germany, with 808 CMLs. We compare the performance of two spatial interpolation methods - Inverse Distance Weighting and Ordinary Kriging - in two cases: where each CML is represented as a single point, and where three points are used. The points’ measurements values in the latter are determined using an iterative algorithm. The analysis of both cases is based on a 48 hour rain event. The results re-confirm the validity of CML-based rain retrieval, showing a slight systematic performance improvement when an iterative algorithm is applied so each CML is represented by more than a single point, independent of the interpolation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.