The global spread of wireless networks brings a great opportunity for their use in environmental studies. Weather, atmospheric conditions, and constituents cause propagation impairments on radio links. As such, while providing communication facilities, existing wireless communication systems can be used as a widely distributed, high-resolution atmospheric observation network, operating in real time with minimum supervision and without additional cost. Here we demonstrate how measurements of the received signal level, which are made in a cellular network, provide reliable measurements for surface rainfall. We compare the estimated rainfall intensity with radar and rain gauge measurements.
Detecting the number of sources is a well-known and a well-investigated problem. In this problem, the number of sources impinging on an array of sensors is to be estimated. The common approach for solving this problem is to use an information theoretic criterion like the minimum description length (MDL), or the Akaike information criterion (AIC). Although it has been gaining much popularity and has been used in a variety of problems, the performance of information theoretic criteria-based estimators for the unknown number of sources has not been sufficiently studied, yet. In the context of array processing, the performance of such estimators were analyzed only for the special case of Gaussian sources where no prior knowledge of the array structure, if given, is used. Based on the theory of misspecified models, this paper presents a general asymptotic analysis of the performance of any information theoretic criterion-based estimator, and especially of the MDL estimator. In particular, the performance of the MDL estimator, which assumes Gaussian sources and structured array when applied to Gaussian sources, is analyzed. In addition, it is shown that the performance of a certain MDL estimator is not very sensitive to the actual distribution of the source signals. However, appropriate use of prior knowledge about the array geometry can lead to significant improvement in the performance of the MDL estimator. Simulation results show good fit between the empirical and the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.