Highlights d Granzyme B + CD8 + T cells accumulate in the brain after traumatic brain injury (TBI) d Brain CD8 + T cells contribute to chronic motor deficits and myelin pathology d Deficiency/depletion of CD8 + T cells promotes neurological recovery following TBI d B cells and autoreactive antibodies appear to play a regulatory role in TBI
The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator-matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or dow...
The opening of the tight junctions in the blood-brain barrier (BBB) following traumatic brain injury (TBI) is hypothesized to be sufficient to enable accumulation of large drug carriers, such as stealth liposomes, in a similar manner to the extravasation seen in tumor tissue via the enhanced permeability and retention (EPR) effect. The controlled cortical impact model of TBI was used to evaluate liposome accumulation in mice. Dual-radiolabeled PEGylated liposomes were administered either immediately after induction of TBI or at increasing times post-TBI to mimic the likely clinical scenario. The accumulation of radiolabel in the brain tissue ipsilateral and contralateral to the site of trauma, as well as in other organs, was evaluated. Selective influx of liposomes occurred at 0-8 h after injury, while the barrier closed between 8 and 24 hr after injury, consistent with reports on albumin infiltration. Significantly enhanced accumulation of liposomes occurred in mice subjected to TBI compared to anaesthetized controls, and accumulation was greater in the injured versus the contralateral side of the brain. Thus, stealth liposomes show potential to enhance drug delivery to the site of brain injury with a wide range of encapsulated therapeutic candidates.
Three independent transgenic mouse lines were generated with the human Friedreich ataxia gene, FRDA, in an 188-kb bacterial artificial chromosome (BAC) genomic sequence. Three copies of the transgene per diploid mouse genome were integrated in a single site in each mouse line. Transgenic mice were mated with mice heterozygous for a knockout mutation of the murine Frda gene, to generate mice homozygous for the Frda knockout mutation and hemizygous or homozygous for the human transgene. Rescue of the embryonic lethality that is associated with homozygosity for the Frda knockout mutation was observed in all three lines. Rescued mice displayed normal behavioral and biochemical parameters. RT-PCR analysis demonstrated that human FRDA mRNA is expressed in all the lines. The relative expression of the human FRDA and mouse Frda genes showed a similar pattern in different tissues in all three lines, indicating position-independent control of expression of the human FRDA transgene. However, large differences in the human:mouse mRNA ratio were observed between different tissues in all three lines. The human transgene is expressed at much higher levels in the brain, liver, and skeletal muscle than the endogenous gene, while expression of the human transgene in blood is only 25-30% of the mouse gene. These studies will facilitate the development of humanized mouse models of Friedreich ataxia through introduction of a GAA trinucleotide expansion or specific known point mutations in the normal human FRDA locus and the study of the regulation of gene expression from the FRDA locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.