Tranexamic acid (TXA) is an antifibrinolytic agent that blocks plasmin formation. Because plasmin is known to promote inflammatory and immunosuppressive responses, we explored the possibility that plasmin-mediated immunosuppression in patients undergoing cardiac surgery can be directly reversed by TXA and decrease postoperative infection rates. The modulatory effect of TXA on inflammatory cytokine levels and on innate immune cell activation were evaluated with multiplex enzyme-linked immunosorbent assay and flow cytometry, respectively. Postoperative infection rates were determined in patients undergoing cardiac surgery and randomized to TXA (ACTRN12605000557639; http://www.anzca.edu.au). We demonstrate that TXA-mediated plasmin blockade modulates the immune system and reduces surgery-induced immunosuppression in patients following cardiac surgery. TXA enhanced the expression of immune-activating markers while reducing the expression of immunosuppressive markers on multiple myeloid and lymphoid cell populations in peripheral blood. TXA administration significantly reduced postoperative infection rates, despite the fact that patients were being administered prophylactic antibiotics. This effect was independent of the effect of TXA at reducing blood loss. TXA was also shown to exert an immune-modulatory effect in healthy volunteers, further supporting the fibrin-independent effect of TXA on immune function and indicating that baseline plasmin levels contribute to the regulation of the immune system in the absence of any comorbidity or surgical trauma. Finally, the capacity of TXA to reduce infection rates, modulate the innate immune cell profile, and generate an antifibrinolytic effect overall was markedly reduced in patients with diabetes, demonstrating for the first time that the diabetic condition renders patients partially refractory to TXA.
Highlights d Granzyme B + CD8 + T cells accumulate in the brain after traumatic brain injury (TBI) d Brain CD8 + T cells contribute to chronic motor deficits and myelin pathology d Deficiency/depletion of CD8 + T cells promotes neurological recovery following TBI d B cells and autoreactive antibodies appear to play a regulatory role in TBI
Plasmin is the effector protease of the fibrinolytic system, well known for its involvement in fibrin degradation and clot removal. However, plasmin is also recognized as a potent modulator of immunological processes by directly interacting with various cell types including leukocytes (monocytes, macrophages, and dendritic cells) and cells of the vasculature (endothelial cells, smooth muscle cells) as well as soluble factors of the immune system and components of the extracellular matrix. In fact, the removal of misfolded proteins and maintenance of tissue homeostasis seem to be major physiological functions of plasmin. However, a large body of evidence also suggests that excessive plasmin generation frequently contributes to the pathophysiology of acute and chronic inflammatory processes. Hence, one question arising from the broadening effects of plasmin in physiology is whether antifibrinolytic drugs (i.e., tranexamic acid, epsilon aminocaproic acid, or aprotinin) that target plasmin either directly or indirectly and which are commonly used to prevent or treat bleeding might have unintended consequences on the immune response or on other nonfibrinolytic processes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.