Tranexamic acid (TXA) is an antifibrinolytic agent that blocks plasmin formation. Because plasmin is known to promote inflammatory and immunosuppressive responses, we explored the possibility that plasmin-mediated immunosuppression in patients undergoing cardiac surgery can be directly reversed by TXA and decrease postoperative infection rates. The modulatory effect of TXA on inflammatory cytokine levels and on innate immune cell activation were evaluated with multiplex enzyme-linked immunosorbent assay and flow cytometry, respectively. Postoperative infection rates were determined in patients undergoing cardiac surgery and randomized to TXA (ACTRN12605000557639; http://www.anzca.edu.au). We demonstrate that TXA-mediated plasmin blockade modulates the immune system and reduces surgery-induced immunosuppression in patients following cardiac surgery. TXA enhanced the expression of immune-activating markers while reducing the expression of immunosuppressive markers on multiple myeloid and lymphoid cell populations in peripheral blood. TXA administration significantly reduced postoperative infection rates, despite the fact that patients were being administered prophylactic antibiotics. This effect was independent of the effect of TXA at reducing blood loss. TXA was also shown to exert an immune-modulatory effect in healthy volunteers, further supporting the fibrin-independent effect of TXA on immune function and indicating that baseline plasmin levels contribute to the regulation of the immune system in the absence of any comorbidity or surgical trauma. Finally, the capacity of TXA to reduce infection rates, modulate the innate immune cell profile, and generate an antifibrinolytic effect overall was markedly reduced in patients with diabetes, demonstrating for the first time that the diabetic condition renders patients partially refractory to TXA.
The balance of inflammation and immunosuppression driven by changed ratios in diverse myeloid and T cell subsets, as well as their state of activation and ability to migrate to lymphoid compartments or inflammatory sites, has emerged as a highly active area of study across clinical trials of vaccines and therapies against cancer, trauma, as well as autoimmune and infectious diseases. There is a need for effective protocols which maximally use the possibilities offered by modern flow cytometers to characterize such immune cell changes in peripheral blood using small volumes of human blood. Additionally, longitudinal clinical studies often use cryopreserved samples, which can impact flow cytometric results. To efficiently gauge both the innate and the adaptive immune response, two novel 15-color antibody panels to identify key myeloid and T cell subsets and their functional potential were established. This approach was used to compare cellular immune profiles in fresh whole blood and in matched cryopreserved peripheral blood mononuclear cells (PBMCs). Cocktail I was designed to identify and characterize myeloid cell populations including dendritic cells (DCs), monocytic monocyte-derived suppressor cells (MO-MDSC), and monocytes, determining further core aspects of their state of maturity, T cell stimulatory (or inhibitory) potential, and migration capability. Cocktail II was used for phenotyping diverse T cells subsets, and their key migration and functional regulatory capabilities. The two 15-color antibody panels for the evaluation of both immune-stimulating and immunosuppressive processes presented herein allowed for efficient evaluation of the balance of immune activation versus immunosuppression across key blood cells, with good resolution for all 15 markers stained for in each panel. Gating strategies for the myeloid and T cells are presented to further support specific subset identification. This protocol was shown to be reproducible across donors and useful to study both RBC-lysed whole blood and cryopreserved PBMCs. © 2017 International Society for Advancement of Cytometry.
Background Traumatic brain injury (TBI) is known to promote immunosuppression, making patients more susceptible to infection, yet potentially exerting protective effects by inhibiting central nervous system (CNS) reactivity. Plasmin, the effector protease of the fibrinolytic system, is now recognized for its involvement in modulating immune function. Objective To evaluate the effects of plasmin and tranexamic acid (TXA) on the immune response in wild‐type and plasminogen‐deficient (plg−/−) mice subjected to TBI. Methods Leukocyte subsets in lymph nodes and the brain in mice post TBI were evaluated by flow cytometry and in blood with a hemocytometer. Immune responsiveness to CNS antigens was determined by Enzyme‐linked Immunosorbent Spot (ELISpot) assay. Fibrinolysis was determined by thromboelastography and measuring D‐dimer and plasmin‐antiplasmin complex levels. Results Plg−/− mice, but not plg+/+ mice displayed increases in both the number and activation of various antigen‐presenting cells and T cells in the cLN 1 week post TBI. Wild‐type mice treated with TXA also displayed increased cellularity of the cLN 1 week post TBI together with increases in innate and adaptive immune cells. These changes occurred despite the absence of systemic hyperfibrinolysis or coagulopathy in this model of TBI. Importantly, neither plg deficiency nor TXA treatment enhanced the autoreactivity within the CNS. Conclusion In the absence of systemic hyperfibrinolysis, plasmin deficiency or blockade with TXA increases migration and proliferation of conventional dendritic cells (cDCs) and various antigen‐presenting cells and T cells in the draining cervical lymph node (cLN) post TBI. Tranexamic acid might also be clinically beneficial in modulating the inflammatory and immune response after TBI, but without promoting CNS autoreactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.