SUMMARY Background Gluten-free diet (GFD) is the only management available for celiac disease (CeD), a permanent immune intolerance to gluten. Nexvax2® is the first therapeutic vaccine designed to treat CeD. The adjuvant-free formulation of peptides is intended to engage and render gluten-specific CD4+ T cells unresponsive to further antigenic stimulation. We have assessed safety and pharmacodynamics of Nexvax2® in patients with CeD on GFD. Methods In two randomized, double-blind, placebo-controlled, phase 1 studies at 12 community sites in Australia, New Zealand and the United States, we screened for HLA-DQ2·5+ CeD patients (aged 18–70 years) on GFD. The screening and post-treatment periods included either a crossover, placebo-controlled, oral gluten challenge (OGC) to mobilize and assess T cells responsive to Nexvax2 or, for the final cohort in each study, endoscopy and duodenal histology without OGC. Participants and study staff were masked to the gluten content of food provided for each interval of the OGCs. One of two sequences of active and placebo challenges was assigned (1:1) by central randomization using a simple block method. The sequence of challenges was active/placebo then active/placebo, or placebo/active then active/placebo for the OGCs in the screening and post-treatment periods, respectively. Participants with a negative interferon (IFN)-γ release assay (IGRA) to Nexvax2 peptides after the screening OGC, or Marsh score >1 were discontinued before dosing. There was temporal allocation of participants to sequential cohorts assessing multiple fixed intradermal doses of Nexvax2 (60µg, 90µg, or 150µg weekly in the 3-dose study; or 150µg, or 300µg two-times weekly in the 16-dose study) in 0.1 mL 0.9% sodium chloride. A maximum tolerated dose (MTD) was administered in the final biopsy cohort in each study. Participants within each cohort were assigned to receive Nexvax2 or placebo by central randomization (2:1, respectively) using simple block method in SAS software Version 9·2. Participants, investigators, and study staff were masked to the treatment assignment, except for the study pharmacist. The primary endpoint was the number and percentage of adverse events in the treatment period. Other safety outcomes included duodenal histology, gastrointestinal symptoms, plasma cytokines, and immune cell frequencies. The main pharmacodynamic endpoint was IGRA to Nexvax2 peptides. All participants who received Nexvax2 or placebo, the safety population, were included in an intention to treat analysis for the primary endpoint. Additional post hoc analyses were also performed. Both trials were completed and closed before data analysis. Trials were registered with Australian New Zealand Clinical Trials Registry, numbers ACTRN12612000355875 and ACTRN12613001331729. Findings Participants were screened from November 28, 2012 to August 14, 2014, and August 3, 2012 to September 10, 2013, for the 3-dose and 16-dose studies respectively. Across both studies, 136 (80%) of 169 volunteers met initial eligibility crite...
Colorectal cancer is one of the five leading causes of cancer mortality worldwide. The mechanisms of pathogen clearance, inflammation and regulation by T cells in the healthy bowel are also important in controlling tumor growth. The majority of studies analyzing T cells and their relationship to colorectal tumor growth have focused on individual T cell markers or gene clusters and thus the complexity of the T cell response contributing to the growth of the tumor is not clear. We have studied the T cells in colorectal cancer patients and have defined a unique T cell signature for colorectal tumor tissue. Using a novel analytical flow cytometric approach in concert with confocal microscopy, we have shown that the tumor has a lower frequency of effector T cells (CD69+), but a higher frequency of both regulatory (CD25hi Foxp3+) and inflammatory T cells (IL‐17+) compared with associated nontransformed bowel tissue. We have also identified minor populations of T cells expressing conventional markers of both inflammatory and regulatory T cells (CD4+IL‐17+Foxp3+) in the tumor tissue. These cells may represent intermediate populations or they may dictate an inflammatory versus regulatory function in surrounding T cells. Together, these data describe an immune microenvironment in colorectal cancer unique to the tumor tissue and distinct from the surrounding healthy bowel tissue, and this distinct environment is reflected by a gradient of T cells expressing markers of multiple T cell populations. These findings may be used to improve diagnosis and prognosis of colorectal cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.