Little is known about the neuropsychiatric and neurophysiological differences that characterize abnormal recovery following a concussion. The present study aimed to investigate the psycho-affective, cognitive, and neurophysiological profiles of symptomatic, slow-to-recover, concussed athletes, asymptomatic concussed athletes, and control athletes. Seventy-eight athletes (26 symptomatic, 26 asymptomatic, 26 control) completed the Beck Depression Inventory-II, Profile of Mood States, and 2-Back task. Additionally, event-related brain potentials were recorded during an experimental three-stimulus visual Oddball paradigm. Compared to asymptomatic and control groups, the symptomatic group reported greater depression symptoms and negatively altered mood states. Symptomatic athletes also exhibited poorer cognitive performance on the 2-Back task, indicated by more errors and slower reaction time. ERP analyses indicated prolonged P3b latency for both symptomatic and asymptomatic groups, but symptomatic athletes also exhibited reduced P3b amplitude compared to both asymptomatic and control groups. For the asymptomatic group, correlations were observed between time since last concussion and functioning, but no relations were observed within the symptomatic group for any measure. The current findings provide valuable information regarding the psycho-affective, cognitive, and neurophysiological profiles of athletes with and without persistent symptoms following a concussion and highlight the need to assess and treat symptomatic, slow-to-recover athletes from a multidimensional and integrative perspective.
Background Our ability to acquire, refine and adapt skilled limb movements is a hallmark of human motor learning that allows us to successfully perform many daily activities. The capacity to acquire, refine and adapt other features of motor performance, such as visual search, eye-hand coordination and visuomotor decisions, may also contribute to motor learning. However, the extent to which refinements of multiple behavioral features and their underlying neural processes independently contribute to motor learning remains unknown. In the current study, we used an ethological approach to test the hypothesis that practice-related refinements of multiple behavioral features would be independently predictive of motor learning. Methods Eighteen healthy, young adults used an upper-limb robot with eye-tracking to practice six trials of a continuous, visuomotor task once a week for six consecutive weeks. Participants used virtual paddles to hit away 200 “Targets” and avoid hitting 100 “Distractors” that continuously moved towards them from the back of the workspace. Motor learning was inferred from trial-by-trial acquisition and week-by-week retention of improvements on two measures of task performance related to motor execution and motor inhibition. Adaptations involving underlying neural processes were inferred from trial-by-trial acquisition and week-by-week retention of refinements on measures of skilled limb movement, visual search, eye-hand coordination and visuomotor decisions. We tested our hypothesis by quantifying the extent to which refinements on measures of multiple behavioral features (predictors) were independently predictive of improvements on our two measures of task performance (outcomes) after removing all shared variance between predictors. Results We found that refinements on measures of skilled limb movement, visual search and eye-hand coordination were independently predictive of improvements on our measure of task performance related to motor execution. In contrast, only refinements of eye-hand coordination were independently predictive of improvements on our measure of task performance related to motor inhibition. Conclusion Our results provide indirect evidence that refinements involving multiple, neural processes may independently contribute to motor learning, and distinct neural processes may underlie improvements in task performance related to motor execution and motor inhibition. This also suggests that refinements involving multiple, neural processes may contribute to motor recovery after stroke, and rehabilitation interventions should be designed to produce refinements of all behavioral features that may contribute to motor recovery.
Objective assessments of concussion recovery are crucial for facilitating effective clinical management. However, predictive tools for determining adolescent concussion outcomes are currently limited. Research suggests that heart rate variability (HRV) represents an indirect and objective marker of central and peripheral nervous system integration. Therefore, it may effectively identify underlying deficits and reliably predict the symptomology following concussion. Thus, the present study sought to evaluate the relationship between HRV and adolescent concussion outcomes. Furthermore, we sought to examine its predictive value for assessing outcomes. Fifty-five concussed adolescents (12–17 years old) recruited from a local sports medicine clinic were assessed during the initial subacute evaluation (within 15 days postinjury) and instructed to follow up for a post-acute evaluation. Self-reported clinical and depressive symptoms, neurobehavioral function, and cognitive performance were collected at each timepoint. Short-term HRV metrics via photoplethysmography were obtained under resting conditions and physiological stress. Regression analyses demonstrated significant associations between HRV metrics, clinical symptoms, neurobehavioral function, and cognitive performance at the subacute evaluation. Importantly, the analyses illustrated that subacute HRV metrics significantly predicted diminished post-acute neurobehavioral function and cognitive performance. These findings indicate that subacute HRV metrics may serve as a viable predictive biomarker for identifying underlying neurological dysfunction following concussion and predict late cognitive outcomes.
Context: Following a sports-related concussion, many athletes experience persisting neurophysiological alterations. These alterations may be absent at rest but emerge during moments of physiological stress. Unnoticed and untreated neurophysiological dysfunction may negatively impact long-term neurological health in adolescent athletes as they are at a critical point in development. Objective: To assess cardio-autonomic functioning in athletes with and without a history of concussion by quantifying measures of heart rate variability (HRV) during times of physical and mental exertion. Design: Case-control study. Setting: Research laboratory Patients or Other Participants: Thirty-four male midget-AAA hockey players were separated into those with (n = 16, age = 16.1 ± 1 years, BMI = 23.3 ± 1.8) and those without (n = 18, age = 16.0 ±1 years, BMI = 23.6 ± 2.5) a history of concussion. Intervention(s): All athletes completed a series of HRV recording sessions: 1) at rest; 2) while completing a cognitive task at rest; and 3) while completing a cognitive task after a bout of submaximal aerobic exercise. Main Outcome Measure(s): Time-domain measures of HRV; mean NN interval (NN), standard deviation of NN interval (SDNN), and root mean square of successive differences (RMSSD) were quantified for each assessment. Results: Analyses revealed no demographic differences between groups. No between-group differences in HRV at rest, were observed. However, during completion of the cognitive task at rest and following aerobic exercise, athletes with a history of concussion demonstrated significantly higher SDNN (63.2 ± 4.1 vs. 78.1 ± 4.3; 65.2 ± 3.8 vs 71.2 ± 4.3, p = 0.046) and RMSSD (59.0 ± 5.6 vs. 75.8 ± 6.0; 59.0 ± 5.2 vs. 74.0 ± 5.5, p = 0.035). Conclusion: The results suggest concussive injuries may result in long-term cardio-autonomic dysfunction. Furthermore, these deficits may not be present at rest but may be triggered by physiological stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.