Background: The enteric nervous system contains multiple classes of neurons, distinguishable by morphology, immunohistochemical markers, and projections; however, specific combinations differ between species. Here, types of enteric neurons in human colon were characterized immunohistochemically, using retrograde tracing combined with multiple labeling immunohistochemistry, focussing on non-motor neurons. Methods: The fluorescent carbocyanine tracer, DiI, was applied to the myenteric plexus in ex vivo preparations, filling neurons projecting within the plexus. Limits of projection lengths of motor neurons were established, allowing them to be excluded from the analysis. Long ascending and descending interneurons were then distinguished by labeling for discriminating immunohistochemical markers: calbindin, calretinin, enkephalin, 5-hydroxytryptamine, nitric oxide synthase, and substance P. These results were combined with a previous published study in which nitric oxide synthase and choline acetyltransferase immunoreactivities were established. Key Results: Long ascending neurons (with projections longer than 8 mm, which excludes more than 95% motor neurons) formed four types, in descending order of abundance, defined by immunoreactivity for: (a) ChAT+/ENK+, (b) ChAT+/ENK+/ SP+, (c) ChAT+/Calb+, and (d) ChAT+/ENK+/Calb+. Long descending neurons, up to 70 mm long also formed at least four types, distinguished by immunoreactivity for (a) NOS + cells (without ChAT), (b) ChAT+/NOS+, (c) ChAT+/Calret+, and (d) ChAT+/5HT + cells (with or without NOS). Conclusions and Inferences: Long interneurons, which do not innervate muscularis externa, are likely to coordinate neural activity over distances of many centimeters along the colon. Characterizing their neurochemical coding provides a basis for understanding their roles, investigating their connectivity, and building a comprehensive account of human colonic enteric neurons.
Extrinsic sensory neurons play a key role in the function of the gastrointestinal tract. They are responsible for the sensations that arise in the gut and can initiate automatic reflexes. In some cases, disordered sensation is clinically problematic-pain, bloating, excessive urgency and nausea are well-known examples. Major advances have been made in understanding the function of somatic sensory neurons in the last 50 years. However, the sensory neurons that mediate sensations from the viscera remain less well understood. This is partly because viscera receive a dense autonomic innervation that can be difficult to separate from extrinsic sensory neurons. A key requirement to understand the genesis of sensation is to distinguish the different classes of sensory neurons and the types of stimuli which they encode. The aim of this short paper is to summarise what was known about these matters 30 years ago and highlight some of the major advances in the understanding of the types of extrinsic sensory neurons to the gut. Necessarily, the choice of papers is somewhat idiosyncratic, but they illustrate the range of advances that have been made in distinguishing the different classes of gastrointestinal afferent nerves.
Background The enteric nervous system contains inhibitory and excitatory motor neurons which modulate smooth muscle contractility. Cell bodies of longitudinal muscle motor neurons have not been identified in human intestine. Methods We used retrograde tracing ex vivo with DiI, with multiple labeling immunohistochemistry, to characterize motor neurons innervating tenial and inter‐tenial longitudinal muscle of human colon. Key Results The most abundant immunohistochemical markers in the tertiary plexus were vesicular acetylcholine transporter, nitric oxide synthase (NOS), and vasoactive intestinal polypeptide (VIP). Of retrogradely traced motor neurons innervating inter‐tenial longitudinal muscle, 95% were located within 6mm oral or anal to the DiI application site. Excitatory motor neuron cell bodies, immunoreactive for choline acetyltransferase (ChAT), were clustered aborally, whereas NOS‐immunoreactive cell bodies were distributed either side of the DiI application site. Motor neurons had small cell bodies, averaging 438 + 18µm2 in cross‐sectional area, similar for ChAT‐ and NOS‐immunoreactive subtypes. Motor neurons innervating the tenia had slightly longer axial projections, with 95% located within 9mm. ChAT‐immunoreactive excitatory motor neurons to tenia were clustered aborally, whereas NOS‐immunoreactive inhibitory motor neurons had both ascending and descending projections. VIP immunoreactivity was rarely present without NOS immunoreactivity in motor neurons. Conclusions and Inferences Tenial and inter‐tenial motor neurons innervating the longitudinal muscle have short projections. Inhibitory motor neurons have less polarized projections than cholinergic excitatory motor neurons. Longitudinal and circular muscle layers are innervated by distinct local populations of excitatory and inhibitory motor neurons. A population of human enteric neurons that contribute significantly to colonic motility has been characterized.
BackgroundThe sympathetic nervous system inhibits human colonic motility largely by effects on enteric neurons. Noradrenergic axons, which branch extensively in the myenteric plexus, are integral to this modulatory role, but whether they contact specific types of enteric neurons is unknown. The purpose of this study was to determine the association of noradrenergic varicosities with types of enteric neurons.MethodsHuman colonic tissue from seven patients was fixed and dissected prior to multi-layer immunohistochemistry for human RNA binding proteins C and D (HuC/D) (pan-neuronal cell body labelling), tyrosine hydroxylase (TH, catecholaminergic labelling), Enkephalin (ENK), choline acetyltransferase (ChAT, cholinergic labelling) and/or nitric oxide synthase (NOS, nitrergic labelling) and imaged using confocal microscopy. TH-immunoreactive varicose nerve endings and myenteric cell bodies were reconstructed as three dimensional digital images. Data was exported to a purpose-built software package which quantified the density of varicosities close to the surface of each myenteric cell body.ResultsTH-immunoreactive varicosities had a greater mean density within 1 μm of the surface of ChAT +/NOS− nerve cell bodies compared with ChAT−/NOS + cell bodies. Similarly, ENK-immunoreactive varicosities also had a greater mean density close to ChAT +/NOS− cell bodies compared with ChAT−/NOS + cells.ConclusionA method for quantifying close associations between varicosities and nerve cell bodies was developed. Sympathetic axons in the myenteric plexus preferentially target cholinergic excitatory cells compared to nitrergic neurons (which are largely inhibitory). This connectivity is likely to be involved in inhibitory modulation of human colonic motility by the sympathetic nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.