A novel visualization technique is proposed for the sum of ranking differences method (SRD) based on parallel coordinates. An axis is defined for each variable, on which the data are depicted row-wise. By connecting data, the lines may intersect. The fewer intersections between the variables, the more similar they are and the clearer the figure becomes. Therefore, the visualization depends on what techniques are used to order the variables. The key idea is to employ the SRD method to measure the degree of similarity of the variables, establishing a distance-based order. The distances between the axes are not uniformly distributed in the proposed visualization; their closeness reflects similarity, according to their SRD value. The proposed algorithm identifies false similarities through an iterative approach, where the angles between the SRD values determine which side a variable is plotted. Visualization of the algorithm is provided by MATLAB/Octave source codes. The proposed tool is applied to study how the sources of greenhouse gas emissions can be grouped based on the statistical data of the countries. A comparison to multidimensional scaling (MDS)-based ordering is also given. The use case demonstrates the applicability of the method and the synergies of the incorporation of the SRD method into parallel coordinates.
Non-negative matrix factorization (NMF) efficiently reduces high dimensionality for many-objective ranking problems. In multi-objective optimization, as long as only three or four conflicting viewpoints are present, an optimal solution can be determined by finding the Pareto front. When the number of the objectives increases, the multi-objective problem evolves into a many-objective optimization task, where the Pareto front becomes oversaturated. The key idea is that NMF aggregates the objectives so that the Pareto front can be applied, while the Sum of Ranking Differences (SRD) method selects the objectives that have a detrimental effect on the aggregation, and validates the findings. The applicability of the method is illustrated by the ranking of 1176 universities based on 46 variables of the CWTS Leiden Ranking 2020 database. The performance of NMF is compared to principal component analysis (PCA) and sparse non-negative matrix factorization-based solutions. The results illustrate that PCA incorporates negatively correlated objectives into the same principal component. On the contrary, NMF only allows non-negative correlations, which enable the proper use of the Pareto front. With the combination of NMF and SRD, a non-biased ranking of the universities based on 46 criteria is established, where Harvard, Rockefeller and Stanford Universities are determined as the first three. To evaluate the ranking capabilities of the methods, measures based on Relative Entropy (RE) and Hypervolume (HV) are proposed. The results confirm that the sparse NMF method provides the most informative ranking. The results highlight that academic excellence can be improved by decreasing the proportion of unknown open-access publications and short distance collaborations. The proportion of gender indicators barely correlate with scientific impact. More authors, long-distance collaborations, publications that have more scientific impact and citations on average highly influence the university ranking in a positive direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.