Canine babesiosis has recently been recognized as an emerging infectious disease of dogs in North America. We sought to develop a seminested PCR to detect and differentiate Babesia gibsoni (Asian genotype), B. canis subsp. vogeli, B. canis subsp. canis, and B. canis subsp. rossi DNA in canine blood samples. An outer primer pair was designed to amplify an ϳ340-bp fragment of the 18S rRNA genes from B. gibsoni (Asian genotype), B. canis subsp. vogeli, B. canis subsp. rossi, and B. canis subsp. canis but not mammalian DNA. Forward primers were designed that would specifically amplify a smaller fragment from each organism in a seminested PCR. The practical limit of detection was 50 organisms/ml of mock-infected EDTA anticoagulated whole blood. The primer pair also amplified an ϳ370-bp fragment of the B. gibsoni (USA/California genotype) 18S rRNA gene from the blood of an experimentally infected dog with a high percentage of parasitemia. Amplicons were not detected when DNA extracted from the blood of a dog that was naturally infected with Theileria annae at a low percentage of parasitemia was amplified. Due to limited sensitivity, this test is not recommended for the routine diagnosis of B. gibsoni (USA/California genotype) or T. annae. The PCR test did not amplify Toxoplasma gondii, Neospora caninum, Leishmania infantum, Cryptosporidium parvum, or canine DNA under any of the conditions tested. The seminested PCR test was able to detect and discriminate B. gibsoni (Asian genotype), B. canis subsp. vogeli, B. canis subsp. canis, and B. canis subsp. rossi DNA in blood samples from infected dogs.
Immune‐mediated hemolytic anemia (IMHA) is an important cause of morbidity and mortality in dogs. IMHA also occurs in cats, although less commonly. IMHA is considered secondary when it can be attributed to an underlying disease, and as primary (idiopathic) if no cause is found. Eliminating diseases that cause IMHA may attenuate or stop immune‐mediated erythrocyte destruction, and adverse consequences of long‐term immunosuppressive treatment can be avoided. Infections, cancer, drugs, vaccines, and inflammatory processes may be underlying causes of IMHA. Evidence for these comorbidities has not been systematically evaluated, rendering evidence‐based decisions difficult. We identified and extracted data from studies published in the veterinary literature and developed a novel tool for evaluation of evidence quality, using it to assess study design, diagnostic criteria for IMHA, comorbidities, and causality. Succinct evidence summary statements were written, along with screening recommendations. Statements were refined by conducting 3 iterations of Delphi review with panel and task force members. Commentary was solicited from several professional bodies to maximize clinical applicability before the recommendations were submitted. The resulting document is intended to provide clinical guidelines for diagnosis of, and underlying disease screening for, IMHA in dogs and cats. These should be implemented with consideration of animal, owner, and geographical factors.
An update on the 2005 American College of Veterinary Internal Medicine (ACVIM) Consensus Statement on blood donor infectious disease screening was presented at the 2015 ACVIM Forum in Indianapolis, Indiana, followed by panel and audience discussion. The updated consensus statement is presented below. The consensus statement aims to provide guidance on appropriate blood‐borne pathogen testing for canine and feline blood donors in North America.
Results document an expansion of the known geographic range for babesiosis among dogs in the United States. Testing for babesiosis should be pursued in dogs with clinicopathologic abnormalities consistent with immune-mediated hemolytic anemia or thrombocytopenia, particularly if there is a history of a recent dog bite.
The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the phylogenetic relationships within the group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.