The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) by [Cu(Me3tacn)(OH2)2]2+ has been studied by spectrophotometrical monitoring of the release of the p-nitrophenylate ion from BNPP. The reaction was followed for up to 8000 min at constant BNPP concentration (15 microM) and ionic strength (0.15 M) and variable concentration of complex (1.0-7.5 mM) and temperature (42.5-65.0 degrees C). Biphasic kinetic traces were observed, indicating that the complex promotes the cleavage of BNPP to NPP [(p-nitrophenyl)phosphate] and then cleavage of the latter to phosphate, the two processes differing in rate by 50-100-fold. Analysis of the more amenable cleavage of BNPP revealed that the rate of BNPP cleavage is among the highest measured for mononuclear copper(II) complexes and is slightly higher than that reported for the close analogue [Cu(iPr3tacn)(OH2)2]2+. Detailed analysis required the determination of the pKa for [Cu(Me3tacn)(OH2)2]2+ and the constant for the dimerization of the conjugate base to [(Me3tacn)Cu(OH)2Cu(Me3tacn)]2+ (Kdim). Thermodynamic parameters derived from spectrophotometric pH titration and the analysis of the kinetic data were in reasonable agreement. Second-order rate constants for cleavage of BNPP by [Cu(Me3tacn)(OH2)(OH)]+ and associated activation parameters were obtained from initial rate analysis (k = 0.065 M(-1) s(-1) at 50.0 degrees C, deltaH = 56+/-6 kJ mol(-1), deltaS = -95+/-18 J K(-1) mol(-1)) and biphasic kinetic analysis (k = 0.14 M(-1) s(-1) at 50.0 degrees C, deltaH = 55+/-6 kJ mol(-1), deltaS = -92+/-20 J K(-1) mol(-1)). The negative entropy of activation is consistent with a concerted mechanism with considerable associative character. The complex was found to catalyze the cleavage of BNPP with turnover rates of up to 1 per day. Although these turnover rates can be considered low from an application point of view, the ability of the complexes to catalyze phosphate ester cleavage is clearly demonstrated.
The reaction of [Cu(L)(H(2)O)](2+) with an excess of thiosulfate in aqueous solution produces a blue to green color change indicative of thiosulfate coordination to Cu(II) [L = tren, Bz(3)tren, Me(6)tren, and Me(3)tren; tren = tris(2-aminoethyl)amine, Bz(3)tren = tris(2-benzylaminoethyl)amine, Me(6)tren = tris(2,2-dimethylaminoethyl)amine, and Me(3)tren = tris(2-methylaminoethyl)amine]. In excess thiosulfate, only [Cu(Me(6)tren)(H(2)O)](2+) promotes the oxidation of thiosulfate to polythionates. Products suitable for single-crystal X-ray diffraction analyses were obtained for three thiosulfate complexes, namely, [Cu(tren)(S(2)O(3))].H(2)O, [Cu(Bz(3)tren)(S(2)O(3))].MeOH, and (H(3)Me(3)tren)[Cu(Me(3)tren)(S(2)O(3))](2)(ClO(4))(3). Isolation of [Cu(Me(6)tren)(S(2)O(3))] was prevented by its reactivity. In each complex, the copper(II) center is found in a trigonal bipyramidal (TBP) geometry consisting of four amine nitrogen atoms, with the bridgehead nitrogen in an axial position and an S-bound thiosulfate in the other axial site. Each structure exhibits H bonding (involving the amine ligand, thiosulfate, and solvent molecule, if present), forming either 2D sheets or 1D chains. The structure of [Cu(Me(3)tren)(MeCN)](ClO(4))(2) was also determined for comparison since no structures of mononuclear Cu(II)-Me(3)tren complexes have been reported. The thiosulfate binding constant was determined spectrophotometrically for each Cu(II)-amine complex. Three complexes yielded the highest values reported to date [K(f) = (1.82 +/- 0.09) x 10(3) M(-1) for tren, (4.30 +/- 0.21) x 10(4) M(-1) for Bz(3)tren, and (2.13 +/- 0.05) x 10(3) M(-1) for Me(3)tren], while for Me(6)tren, the binding constant was much smaller (40 +/- 10 M(-1)).
A series of copper(II) thiosulfonate complexes have been prepared via the reaction of [Cu(Me 3tren)(OH 2)](ClO 4) 2 (Me 3tren = tris(2-methylaminoethyl)amine) with three thiosulfonate ligands (RSO 2S (-), where R = Me, Ph, and MePh) and characterized by microanalysis, FTIR spectroscopy, and X-ray crystallography. In these complexes, the distorted trigonal bipyramidal copper(II) coordination sphere is occupied by four amine nitrogen atoms from the tripodal tetramine ligand and an apically bound sulfur atom from the thiosulfonate ligand. By using the tripodal tetramine ligand the oxidation of the thiosulfonate has been restricted, allowing the isolation of the complexes. The Cu-S distances were found to be similar to those in related thiosulfate complexes, indicating coordinative interactions of similar strength. Two types of intramolecular hydrogen bonding interactions were evident which enhance the binding of the thiosulfonate to the copper(II) center. These interactions, which involve two amine N-H groups and either one or two thiosulfonate oxygens, were found to be weaker than in the corresponding thiosulfate complexes. The complex formation constants for the thiosulfonate complexes (log K f = 0.3-0.7) were found to be two orders of magnitude lower than compared to the thiosulfate analogues. This correlates well with a lower strength of intramolecular hydrogen bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.