In biological systems, the amino acid cysteine combines catalytic activity with an extensive redox chemistry and unique metal binding properties. The interdependency of these three aspects of the thiol group permits the redox regulation of proteins and metal binding, metal control of redox activity, and ligand control of metal-based enzyme catalysis. Cysteine proteins are therefore able to act as "redox switches," to sense concentrations of oxidative stressors and unbound zinc ions in the cytosol, to provide a "storage facility" for excess metal ions, to control the activity of metalloproteins, and to take part in important regulatory and signaling pathways. The diversity of cysteine's multiple roles in vivo is equally as fascinating as it is promising for future biochemical and pharmacological research.
Recent studies on the redox behaviour of cysteine residues in peptides and proteins have dramatically changed our perspective of the amino acid's role in biocatalysis, intracellular redox sensing and cell signalling. Cysteine sulfinic acid formation in proteins, for example, has long been viewed as an irreversible 'overoxidation' process that might lead to loss of activity, especially under conditions of oxidative stress. Within the last year, several research groups have independently shown that sulfinic acids can be reduced to thiols in vivo. An enzyme with sulfinic acid reductase activity, called sulfiredoxin, has been isolated from yeast and a gene encoding a human analogue has been identified in the human genome. Reversibility of sulfinic acid formation opens the door to a range of yet unexplored redox cycles, cell signalling processes and reduction mechanisms. These cysteine-based redox processes will be of enormous interest to chemists, biochemists, biologists and the medical community alike.
The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) by [Cu(Me3tacn)(OH2)2]2+ has been studied by spectrophotometrical monitoring of the release of the p-nitrophenylate ion from BNPP. The reaction was followed for up to 8000 min at constant BNPP concentration (15 microM) and ionic strength (0.15 M) and variable concentration of complex (1.0-7.5 mM) and temperature (42.5-65.0 degrees C). Biphasic kinetic traces were observed, indicating that the complex promotes the cleavage of BNPP to NPP [(p-nitrophenyl)phosphate] and then cleavage of the latter to phosphate, the two processes differing in rate by 50-100-fold. Analysis of the more amenable cleavage of BNPP revealed that the rate of BNPP cleavage is among the highest measured for mononuclear copper(II) complexes and is slightly higher than that reported for the close analogue [Cu(iPr3tacn)(OH2)2]2+. Detailed analysis required the determination of the pKa for [Cu(Me3tacn)(OH2)2]2+ and the constant for the dimerization of the conjugate base to [(Me3tacn)Cu(OH)2Cu(Me3tacn)]2+ (Kdim). Thermodynamic parameters derived from spectrophotometric pH titration and the analysis of the kinetic data were in reasonable agreement. Second-order rate constants for cleavage of BNPP by [Cu(Me3tacn)(OH2)(OH)]+ and associated activation parameters were obtained from initial rate analysis (k = 0.065 M(-1) s(-1) at 50.0 degrees C, deltaH = 56+/-6 kJ mol(-1), deltaS = -95+/-18 J K(-1) mol(-1)) and biphasic kinetic analysis (k = 0.14 M(-1) s(-1) at 50.0 degrees C, deltaH = 55+/-6 kJ mol(-1), deltaS = -92+/-20 J K(-1) mol(-1)). The negative entropy of activation is consistent with a concerted mechanism with considerable associative character. The complex was found to catalyze the cleavage of BNPP with turnover rates of up to 1 per day. Although these turnover rates can be considered low from an application point of view, the ability of the complexes to catalyze phosphate ester cleavage is clearly demonstrated.
Numerous human diseases are linked to a biochemical condition known as oxidative stress (OS). Antioxidants are therefore becoming increasingly important as potential disease prevention and therapeutic agents. Since OS is a multi-stressor event, agents combining a range of different antioxidant properties, such as redox catalysis and metal binding, might be more effective and selective than mono-functional agents. Selenium derivatives of aniline and pyridine combine redox activity with metal binding properties. These multifunctional agents have a distinct electrochemical profile, and exhibit good catalytic activity in the glutathione peroxidase mimic and metallothionein assays. They also show antioxidant activity in a skin cell model of UVA-induced stress. These compounds might therefore provide the basis for novel agents combining two or more distinct antioxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.