We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap.
We use first-principles density functional theory to investigate the effect of both tensile and compressive strain on the work functions of various metal dichalcogenide monolayers. We find that for all six species considered, including MoS2, WS2, SnS2, VS2, MoSe2 and MoTe2, that compressive strain of up to 10% decreases the work function continuously by as much as 1.0 eV. Large enough tensile strain is also found to decrease the work function, although in some cases we observe an increase in the work function for intermediate values of tensile strain. This work function modulation is attributed to a weakening of the chalcogenide-metal bonds and an increase in total energy of each system as a function of strain. Values of strain which bring the metal atoms closer together lead to an increase in electrostatic potential energy, which in turn results in an increase in the vacuum potential level. The net effect on the work function can be explained in terms of the balance between the increases in the vacuum potential levels and Fermi energy.
We report high performance IR photocurrent response of two-dimensional hybrid materials consisting of layered WS2 nanosheets and reduced graphene oxide (RGO). Comparative photocurrent response studies of WS2 nanosheets, RGO, and WS2/RGO hybrids were carried out by performing current-voltage (I-V) and time-dependent current measurements with a laser excitation source having a wavelength of 808 nm. The experimental investigations indicate that WS2/RGO hybrids show negative photocurrent response, whereas WS2 and RGO show positive photocurrent response. The negative photocurrent response of the WS2/RGO hybrids is explained using a band alignment diagram and attributed to a charge transfer mechanism between WS2 and RGO. This analysis is further corroborated by first-principles density functional calculations. The fabricated device based on WS2/RGO hybrids shows a photosensitivity Rλ of about 6 AW−1 and a quantum efficiency η of ∼924%, which demonstrates high sensitivity of the hybrid material towards IR detection. WS2/RGO hybrids are therefore promising candidates for potential applications in optoelectronic circuits and low cost, high performance, and reliable photodetectors.
We report here our experimental investigations on p-doped graphene using tin sulfide (SnS2), which shows enhanced field emission properties. The turn on field required to draw an emission current density of 1 μA/cm2 is significantly low (almost half the value) for the SnS2/reduced graphene oxide (RGO) nanocomposite (2.65 V/μm) compared to pristine SnS2 (4.8 V/μm) nanosheets. The field enhancement factor β (∼3200 for the SnS2 and ∼3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (F-N) plots, which indicates that the emission is from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The magnitude of work function of SnS2 and a SnS2/graphene composite has been calculated from first principles density functional theory (DFT) and is found to be 6.89 eV and 5.42 eV, respectively. The DFT calculations clearly reveal that the enhanced field emission properties of SnS2/RGO are due to a substantial lowering of the work function of SnS2 when supported by graphene, which is in response to p-type doping of graphene.
The electronic and magnetic properties of varying width, oxygen functionalized armchair graphene nanoribbons (AGNRs) are investigated using first-principles density functional theory (DFT). Our study shows that O-passivation results in a rich geometrical environment which in turn determines the electronic and magnetic properties of the AGNR. For planar systems a degenerate magnetic ground state, arising from emptying of O lone-pair electrons, is reported. DFT predicts ribbons with ferromagnetic coupling to be metallic whereas antiferromagnetically coupled ribbons present three band gap families: one metallic and two semiconducting. Unlike hydrogen functionalized AGNRs, the oxygen functionalized ribbons can attain a lower energy configuration by adopting a non-planar geometry. The non-planar structures are non-magnetic and show three semiconducting families of band gap behavior. Quasiparticle corrections to the DFT results predict a widening of the band gaps for all planar and non-planar, semiconducting systems. This suggests that oxygen functionalization could be used to manipulate the electronic structures of AGNRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.