The electronic and magnetic properties of varying width, oxygen functionalized armchair graphene nanoribbons (AGNRs) are investigated using first-principles density functional theory (DFT). Our study shows that O-passivation results in a rich geometrical environment which in turn determines the electronic and magnetic properties of the AGNR. For planar systems a degenerate magnetic ground state, arising from emptying of O lone-pair electrons, is reported. DFT predicts ribbons with ferromagnetic coupling to be metallic whereas antiferromagnetically coupled ribbons present three band gap families: one metallic and two semiconducting. Unlike hydrogen functionalized AGNRs, the oxygen functionalized ribbons can attain a lower energy configuration by adopting a non-planar geometry. The non-planar structures are non-magnetic and show three semiconducting families of band gap behavior. Quasiparticle corrections to the DFT results predict a widening of the band gaps for all planar and non-planar, semiconducting systems. This suggests that oxygen functionalization could be used to manipulate the electronic structures of AGNRs.
The Monte Carlo radiation transport community faces a number of challenges associated with peta- and exa-scale computing systems that rely increasingly on heterogeneous architectures involving hardware accelerators such as GPUs. Existing Monte Carlo codes and methods must be strategically upgraded to meet emerging hardware and software needs. In this paper, we describe the development of a software, called ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments), which is designed as a versatile testbed for future Monte Carlo codes. Preliminary results from five projects in nuclear engineering and medical physics are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.