Patellar tendon auto- and allo-grafts are commonly used in orthopedic surgery for reconstruction of the anterior cruciate ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infectious disease transmission allografts should be radiation-sterilised. As radiation-sterilisation supposedly decreases the mechanical strength of tendon it is important to establish methods of allograft preservation and sterilisation assuring the best quality of grafts and their safety at the same time. Therefore, the purpose of this study was to compare the tensile strength of human patellar tendon (cut out as for ACL reconstruction), preserved by various methods (deep fresh freezing, glycerolisation, lyophilisation) and subsequently radiation-sterilised with doses of 0, 25, 50 or 100 kGy. Bone-Tendon-Bone grafts (BTB) were prepared from cadaveric human patella tendons with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glycerolisation or lyophilisation and were subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. All samples were subjected to mechanical failure tensile tests with the use of Instron system in order to estimate their mechanical properties. All lyophilised grafts were rehydrated before performing of those tests. Obtained mechanical tests results of examined grafts suggest that deep-frozen irradiated grafts retain their initial mechanical properties to an extent which does not exclude their clinical application.
AbstractBackground: CERAMENT™|BONE VOID FILLER is an injectable and moldable ceramic bone substitute material intended for bone voids. The material consists of hydroxyapatite and calcium sulfate hemihydrate. The aim of this study is to present the first long-term results following open curettage of benign bone tumors and tumor-like lesions and void filling with this novel injectable and synthetic bone graft. Methods: Thirty three patients were enrolled into the study between June 2013 and October 2014 .Totally, we treated 24 women and 9 men with a median age of 47 years (range: 22-74). All patients suffered from primary musculoskeletal system disorders (enchondroma 63,6%, giant cell tumor 18%, aneurysmal bone cyst 9%, fibrous dysplasia 9%, Gaucher disease 3%). We performed curettage of pathological lesions, then the bone substitute was administered by means of needle to the void. Results: The average follow-up was 13 months (range: 2-13 months, median 10 months). No metastasis or recurrence had been detected. We received significant clinical improvement relating to VAS, MSTS, and oncological results. Conclusions: The results of our study report that CERAMENT can be successfully used as a bone substitute in patients with various bone diseases, as well as benign bone tumors. CERAMENT can provide an effective and long-term solution for reconstructive procedures following curettage of bone tumors and tumor like lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.