Resolving conflicting ecosystem management goals-such as maintaining fisheries while conserving marine species or harvesting timber while preserving habitat-is a widely recognized challenge. Even more challenging may be conflicts between two conservation goals that are typically considered complementary. Here, we model a case where eradication of an invasive plant, hybrid Spartina, threatens the recovery of an endangered bird that uses Spartina for nesting. Achieving both goals requires restoration of native Spartina. We show that the optimal management entails less intensive treatment over longer time scales to fit with the time scale of natural processes. In contrast, both eradication and restoration, when considered separately, would optimally proceed as fast as possible. Thus, managers should simultaneously consider multiple, potentially conflicting goals, which may require flexibility in the timing of expenditures.
BackgroundEvolutionary arms race plays a major role in shaping biological diversity. In microbial systems, competition often involves chemical warfare and the production of bacteriocins, narrow-spectrum toxins aimed at killing closely related strains by forming pores in their target’s membrane or by degrading the target’s RNA or DNA. Although many empirical and theoretical studies describe competitive exclusion of bacteriocin-sensitive strains by producers of bacteriocins, the dynamics among producers are largely unknown.Methodology/Principal findingsWe used a reporter-gene assay to show that the bacterial response to bacteriocins’ treatment mirrors the inflicted damage Potent bacteriocins are lethal to competing strains, but at sublethal doses can serve as strong inducing agents, enhancing their antagonists’ bacteriocin production. In contrast, weaker bacteriocins are less toxic to their competitors and trigger mild bacteriocin expression. We used empirical and numerical models to explore the role of cross-induction in the arms race between bacteriocin-producing strains. We found that in well-mixed, unstructured environments where interactions are global, producers of weak bacteriocins are selectively advantageous and outcompete producers of potent bacteriocins. However, in spatially structured environments, where interactions are local, each producer occupies its own territory, and competition takes place only in “no man’s lands” between territories, resulting in much slower dynamics.Conclusion/SignificanceThe models we present imply that producers of potent bacteriocins that trigger a strong response in neighboring bacteriocinogenic strains are doomed, while producers of weak bacteriocins that trigger a mild response in bacteriocinogenic strains flourish. This counter-intuitive outcome might explain the preponderance of weak bacteriocin producers in nature. However, the described scenario is prolonged in spatially structured environments thus promoting coexistence, allowing migration and evolution, and maintaining bacterial diversity.
Because of the profound ecological and economic impacts of many non‐native insect species, early detection and eradication of newly founded, isolated populations is a high priority for preventing damages. Though successful eradication is often challenging, the effectiveness of several treatment methods/tactics is enhanced by the existence of Allee dynamics in target populations. Historically, successful eradication has often relied on the application of two or more tactics. Here, we examine how to combine three treatment tactics in the most cost‐effective manner, either simultaneously or sequentially in a multiple‐annum process. We show that each tactic is most efficient across a specific range of population densities. Furthermore, we show that certain tactics inhibit the efficiency of other tactics and should therefore not be used simultaneously; but since each tactic is effective at specific densities, different combinations of tactics should be applied sequentially through time when a multiple‐annum eradication programme is needed.
A major challenge in environmental policymaking is determining whether and how fast our society should adopt sustainable management methods. These decisions may have long-lasting effects on the environment, and therefore, they depend critically on the discount factor, which determines the relative values given to future environmental goods compared to present ones. The discount factor has been a major focus of debate in recent decades, and nevertheless, the potential effect of the environment and its management on the discount factor has been largely ignored. Here we show that to maximize social welfare, policymakers need to consider discount factors that depend on changes in natural resource harvest at the global scale. Particularly, the more our society over-harvests today, the more policymakers should discount the near future, but the less they should discount the far future. This results in a novel discount formula that implies significantly higher values for future environmental goods.
A variety of ecological systems around the world have been damaged in recent years, either by natural factors such as invasive species, storms and global change or by direct human activities such as overfishing and water pollution. Restoration of these systems to provide ecosystem services entails significant economic benefits. Thus, choosing how and when to restore in an optimal fashion is important, but has not been well studied. Here we examine a general model where population growth can be induced or accelerated by investing in active restoration. We show that the most cost-effective method to restore an ecosystem dictates investment until the population approaches an 'economic restoration threshold', a density above which the ecosystem should be left to recover naturally. Therefore, determining this threshold is a key general approach for guiding efficient restoration management, and we demonstrate how to calculate this threshold for both deterministic and stochastic ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.