A high-density, high-channel count, multiplexed ECoG array for auditory-cortex recordings.
Categorization is an important cognitive process. However, the correct categorization of a stimulus is often challenging because categories can have overlapping boundaries. Whereas perceptual categorization has been extensively studied in vision, the analogous phenomenon in audition has yet to be systematically explored. Here, we test whether and how human subjects learn to use category distributions and prior probabilities, as well as whether subjects employ an optimal decision strategy when making auditory-category decisions. We asked subjects to classify the frequency of a tone burst into one of two overlapping, uniform categories according to the perceived tone frequency. We systematically varied the prior probability of presenting a tone burst with a frequency originating from one versus the other category. Most subjects learned these changes in prior probabilities early in testing and used this information to influence categorization. We also measured each subject's frequency-discrimination thresholds (i.e., their sensory uncertainty levels). We tested each subject's average behavior against variations of a Bayesian model that either led to optimal or sub-optimal decision behavior (i.e. probability matching). In both predicting and fitting each subject's average behavior, we found that probability matching provided a better account of human decision behavior. The model fits confirmed that subjects were able to learn category prior probabilities and approximate forms of the category distributions. Finally, we systematically explored the potential ways that additional noise sources could influence categorization behavior. We found that an optimal decision strategy can produce probability-matching behavior if it utilized non-stationary category distributions and prior probabilities formed over a short stimulus history. Our work extends previous findings into the auditory domain and reformulates the issue of categorization in a manner that can help to interpret the results of previous research within a generative framework.
The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations.
The fundamental problem in audition is determining the mechanisms required by the brain to transform an unlabelled mixture of auditory stimuli into coherent perceptual representations. This process is called auditory-scene analysis. The perceptual representations that result from auditory-scene analysis are formed through a complex interaction of perceptual grouping, attention, categorization and decision-making. Despite a great deal of scientific energy devoted to understanding these aspects of hearing, we still do not understand (1) how sound perception arises from neural activity and (2) the causal relationship between neural activity and sound perception. Here, we review the role of the “ventral” auditory pathway in sound perception. We hypothesize that, in the early parts of the auditory cortex, neural activity reflects the auditory properties of a stimulus. However, in latter parts of the auditory cortex, neurons encode the sensory evidence that forms an auditory decision and are causally involved in the decision process. Finally, in the prefrontal cortex, which receives input from the auditory cortex, neural activity reflects the actual perceptual decision. Together, these studies indicate that the ventral pathway contains hierarchical circuits that are specialized for auditory perception and scene analysis.
Summary: Recent electrophysiology recordings in macaque V4/IT suggest that single neuron response to synthetic closed contours can be largely captured by models which only consider a small number of contour fragments (Brincat and Connor 2004). Motivated by this experimental work, we sought firstly to characterize the statistics of contour fragments in natural scenes, and secondly to generate synthetic images which reflect the measured contour-fragment statistics.To detect contour fragments, we defined a set of feature detectors which respond only in the presence of two edges co-occurring at a fixed relative angle – implemented as a logical ‘AND’ of two Gabor-like, laplacian-of-gaussian linear filters. We then determined the pairwise correlations of these contour fragments in a natural image ensemble. If efficient coding extends to higher cortical centers and processing in the ventral visual stream can be modeled as a sequence of logical operations on linear shape features, then the pairwise statistics we measure should be informative about neural shape coding.Using these statistics directly, it is possible to produce a generative model of simple images which contain the measured statistics. We implemented a modified Ising model and solved the inverse problem of determining the optimal model parameters which satisfy the measured correlations. The resulting Ising-like model of the pairwise statistics can generate the probability of any arrangement of contour fragments as measured in the natural image ensemble.As a complementary approach to producing images with naturalistic contour fragment statistics, it is possible to start with a natural scene and isolate the target features. This is achieved by applying our contour fragment detection processing to the single scene and then separately visualizing the fragments detected. This second procedure lends itself to parametric randomization of the generated image.Narrative Elaboration: The central question guiding our study is how shapes are represented in inferotemporal cortex. To that end, we have investigated natural images in order to motivate experiments capable of targeting the extent to which neural processing of shapes involves representing shapes as combinations of key contour features. To simplify, we are focusing on black-and-white images and prioritizing contour features. This project suggests it is possible to generate synthetic images containing only a select set of contour statistics. Our subsequent goals include conducting collaborative macaque electrophysiology experiments with our generated images as visual stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.