New vaccine strategies are needed for prevention of leptospirosis, a widespread human and veterinary disease caused by invasive spirochetes belonging to the genus Leptospira. We have examined the immunoprotective capacity of the leptospiral porin OmpL1 and the leptospiral outer membrane lipoprotein LipL41 in the Golden Syrian hamster model of leptospirosis. Specialized expression plasmids were developed to facilitate expression of leptospiral proteins inEscherichia coli as the membrane-associated proteins OmpL1-M and LipL41-M. Although OmpL1-M expression is highly toxic inE. coli, this was accomplished by using plasmid pMMB66-OmpL1, which has undetectable background expression without induction. LipL41-M expression and processing were enhanced by altering its lipoprotein signal peptidase cleavage site to mimic that of the murein lipoprotein. Active immunization of hamsters with E. coli membrane fractions containing a combination of OmpL1-M and LipL41-M was found to provide significant protection against homologous challenge with Leptospira kirschneri serovar grippotyphosa. At 28 days after intraperitoneal inoculation, survival in animals vaccinated with both proteins was 71% (95% confidence interval [CI], 53 to 89%), compared with only 25% (95% CI, 8 to 42%) in the control group (P < 0.001). On the basis of serological, histological, and microbiological assays, no evidence of infection was found in the vaccinated survivors. The protective effects of immunization with OmpL1-M and LipL41-M were synergistic, since significant levels of protection were not observed in animals immunized with either OmpL1-M or LipL41-M alone. In contrast to immunization with the membrane-associated forms of leptospiral proteins, hamsters immunized with His6-OmpL1 and His6-LipL41 fusion proteins, either alone or in combination, were not protected. These data indicate that the manner in which OmpL1 and LipL41 associates with membranes is an important determinant of immunoprotection.
With malaria parasites (Plasmodium spp.), Toxoplasma, and many other species of medical and veterinary importance its iconic representatives, the protistan phylum Apicomplexa has long been defined as a group composed entirely of parasites and pathogens. We present here a report of a beneficial apicomplexan: the mutualistic marine endosymbiont Nephromyces. For more than a century, the peculiar structural and developmental features of Nephromyces, and its unusual habitat, have thwarted characterization of the phylogenetic affinities of this eukaryotic microbe. Using short-subunit ribosomal DNA (SSU rDNA) sequences as key evidence, with sequence identity confirmed by fluorescence in situ hybridization (FISH), we show that Nephromyces, originally classified as a chytrid fungus, is actually an apicomplexan. Inferences from rDNA data are further supported by the several apicomplexan-like structural features in Nephromyces, including especially the strong resemblance of Nephromyces infective stages to apicomplexan sporozoites. The striking emergence of the mutualistic Nephromyces from a quintessentially parasitic clade accentuates the promise of this organism, and the three-partner symbiosis of which it is a part, as a model for probing the factors underlying the evolution of mutualism, pathogenicity, and infectious disease.symbiosis | mutualism | parasitism | protist phylogeny | molgulid tunicate
We report the cloning of the gene encoding a 36-kDa leptospiral outer membrane lipoprotein, designated LipL36. We obtained the N-terminal amino acid sequence of a staphylococcal V8 proteolytic-digest fragment in order to design an oligonucleotide probe. A Lambda-Zap II library containing EcoRI fragments of Leptospira kirschneri DNA was screened, and a 2.3-kb DNA fragment which contained the entire structural lipL36 gene was identified. Several lines of evidence indicate that LipL36 is lipid modified in a manner similar to that of LipL41, a leptospiral outer membrane lipoprotein we described in a previous study (E. S. Shang, T. A. Summers, and D. A. Haake, Infect. Immun. 64:2322–2330, 1996). The deduced amino acid sequence of LipL36 would constitute a 364-amino-acid polypeptide with a 20-amino-acid signal peptide, followed by an L-X-Y-C lipoprotein signal peptidase cleavage site. LipL36 is solubilized by Triton X-114 extraction of L. kirschneri; phase separation results in partitioning of LipL36 exclusively into the hydrophobic, detergent phase. LipL36 is intrinsically labeled during incubation of L. kirschneri in media containing [3H]palmitate. Processing of LipL36 is inhibited by globomycin, a selective inhibitor of lipoprotein signal peptidase. After processing, LipL36 is exported to the outer membrane along with LipL41 and lipopolysaccharide. Unlike LipL41, there appears to be differential expression of LipL36. In early-log-phase cultures, LipL36 is one of the most abundant L. kirschneri proteins. However, LipL36 levels drop considerably beginning in mid-log phase. LipL36 expression in vivo was evaluated by examining the humoral immune response to leptospiral antigens in the hamster model of leptospirosis. Hamsters surviving challenge with culture-adapted virulent L. kirschneri generate a strong antibody response to LipL36. In contrast, sera from hamsters surviving challenge with host-adaptedL. kirschneri do not recognize LipL36. These findings suggest that LipL36 expression is downregulated during mammalian infection, providing a marker for studying the mechanisms by which pathogenic Leptospira species adapt to the host environment.
It is becoming increasingly apparent that electroporation is the most effective way to introduce plasmid DNA or siRNA into primary cells. The Gene Pulser MXcell electroporation system and Gene Pulser electroporation buffer (Bio-Rad) were specifically developed to easily transfect nucleic acids into mammalian cells and difficult-to-transfect cells, such as primary and stem cells. We will demonstrate how to perform a simple experiment to quickly identify the best electroporation conditions. We will demonstrate how to run several samples through a range of electroporation conditions so that an experiment can be conducted at the same time as optimization is performed. We will also show how optimal conditions identified using 96-well electroporation plates can be used with standard electroporation cuvettes, facilitating the switch from electroporation plates to electroporation cuvettes while maintaining the same electroporation efficiency. In the video, we will also discuss some of the key factors that can lead to the success or failure of electroporation experiments.Protocol
BackgroundThe active human mobile element, long interspersed element 1 (L1) currently populates human genomes in excess of 500,000 copies per haploid genome. Through its mobility via a process called target primed reverse transcription (TPRT), L1 mobilization has resulted in over 100 de novo cases of human disease and has recently been associated with various cancer types. Large advances in high-throughput sequencing (HTS) technology have allowed for an increased understanding of the role of L1 in human cancer; however, researchers are still limited by the ability to validate potentially rare L1 insertion events detected by HTS that may occur in only a small fraction of tumor cells. Additionally, HTS detection of rare events varies greatly as a function of read depth, and new tools for de novo element discovery are needed to fill in gaps created by HTS.ResultsWe have employed droplet digital PCR (ddPCR) to detect rare L1 loci in mosaic human genomes. Our assay allows for the detection of L1 insertions as rare as one cell in every 10,000.ConclusionsddPCR represents a robust method to be used alongside HTS techniques for detecting, validating and quantitating rare L1 insertion events in tumors and other tissues.Electronic supplementary materialThe online version of this article (doi:10.1186/s13100-014-0030-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.