This work reviews the state‐of‐the‐art models for the simulation of bubble columns and focuses on methods coupled with computational fluid dynamics (CFD) where the potential and deficits of the models are evaluated. Particular attention is paid to different approaches in multiphase fluid dynamics including the population balance to determine bubble size distributions and the modeling of turbulence where the authors refer to numerous published examples. Additional models for reactive systems are presented as well as a special chapter regarding the extension of the models for the simulation of bubble columns with a present solid particle phase, i.e., slurry bubble columns.
Both solid particles and column diameter affect the gas holdup and flow regimes in slurry bubble columns, but investigations of the combined effects are not to be found. This study shows the simultaneous impacts on the overall gas holdup and flow regime transitions and determines the dominant effects in slurry bubble columns on the centi‐scale containing solid particle concentrations up to 20 vol %. Additional tomography measurements are presented to visualize the gas phase flow and the spatial gas phase distribution in the column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.