People often make decisions by stochastically retrieving a small set of relevant memories. This limited retrieval implies that human performance can be improved by training on idealized category distributions (Giguère & Love, 2013). Here, we evaluate whether the benefits of idealized training extend to categorization of real-world stimuli, namely classifying mammograms as normal or tumorous. Participants in the idealized condition were trained exclusively on items that, according to a norming study, were relatively unambiguous. Participants in the actual condition were trained on a representative range of items. Despite being exclusively trained on easy items, idealized-condition participants were more accurate than those in the actual condition when tested on a range of item types. However, idealized participants experienced difficulties when test items were very dissimilar from training cases. The benefits of idealization, attributable to reducing noise arising from cognitive limitations in memory retrieval, suggest ways to improve real-world decision making.
Meaning may arise from an element's role or interactions within a larger system. For example, hitting nails is more central to people's concept of a hammer than its particular material composition or other intrinsic features. Likewise, the importance of a web page may result from its links with other pages rather than solely from its content. One example of meaning arising from extrinsic relationships are approaches that extract the meaning of word concepts from co-occurrence patterns in large, text corpora. The success of these methods suggest that human activity patterns may reveal conceptual organization. However, texts do not directly reflect human activity, but instead serve a communicative function and are usually highly curated or edited to suit an audience. Here, we apply methods devised for text to a data source that directly reflects thousands of individuals' activity patterns, namely supermarket purchases. Using product co-occurrence data from nearly 1.3m shopping baskets, we trained a topic model to learn 25 high-level concepts (or topics). These topics were found to be comprehensible and coherent by both retail experts and consumers. Topics ranged from specific (e.g., ingredients for a stir-fry) to general (e.g., cooking from scratch). Topics tended to be goal-directed and situational, consistent with the notion that human conceptual knowledge is tailored to support action. Individual differences in the topics sampled predicted basic demographic characteristics. These results suggest that human activity patterns reveal conceptual organization and may give rise to it. cognition | computational social science | big data | machine learning | decision making
Recent findings suggest a bidirectional relationship between preferences and choices such that what is chosen can become preferred. Yet, it is still commonly held that preferences for individual items are maintained, such as caching a separate value estimate for each experienced option. Instead, we propose that all possible choice options and preferences are represented in a shared, continuous, multidimensional space that supports generalization. Decision making is cast as a learning process that seeks to align choices and preferences to maintain coherency. We formalized an error-driven learning model that updates preferences to align with past choices, which makes repeating those and related choices more likely in the future. The model correctly predicts that making a free choice increases preferences along related attributes. For example, after choosing a political candidate based on trivial information (e.g., they like cats), voters' views on abortion, immigration, and trade subsequently shifted to match their chosen candidate.
Whether adding songs to a playlist or groceries during an online shop, how do we decide what to choose next? We develop a model that predicts such open-ended, sequential choices using a process of cued retrieval from long-term memory. Using the past choice to cue subsequent retrievals, this model predicts the sequential purchases and response times of nearly 5 million grocery purchases made by more than 100,000 online shoppers. Products can be associated in different ways, such as by their episodic association or semantic overlap, and we find that consumers query multiple forms of associative knowledge when retrieving options. Attending to certain knowledge sources, as estimated by our model, predicts important retrieval errors, such as the propensity to forget or add unwanted products. Our results demonstrate how basic memory retrieval mechanisms shape choices in real-world, goal-directed tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.