Background-During exercise, the sympathetic nervous system is activated and blood pressure and heart rate increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that (1) capsaicin stimulates muscle metabosensitive vanilloid receptor subtype 1 (VR1), inducing a neurally mediated pressor response, and (2) activation of ATP-sensitive P2X receptors enhances the pressor response seen when muscle mechanoreceptors are engaged by muscle stretch. Thus, we hypothesized that the pressor response to VR1 stimulation would be smaller and the sensitizing effects of P2X stimulation greater in rats with HF due to chronic myocardial infarction (MI) than in controls. Methods and Results-Eight to 14 weeks after coronary ligation, rats with infarcts Ͼ35% had an increased left ventricular end-diastolic pressure and a marked increase in heart weight. Capsaicin injected into the arterial supply of the hindlimb increased blood pressure by 39% (baseline, 93.9Ϯ9.5 mm Hg) in control animals but only by 8% (baseline, 94.8Ϯ10.1 mm Hg) in rats with large MIs (PϽ0.05). P2X receptor stimulation by ␣,-methylene ATP enhanced the pressor response to muscle stretch by 42% in control animals and by 72% in rats with large MIs (PϽ0.05). Conclusions-Compared
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.