Background-During exercise, the sympathetic nervous system is activated and blood pressure and heart rate increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that (1) capsaicin stimulates muscle metabosensitive vanilloid receptor subtype 1 (VR1), inducing a neurally mediated pressor response, and (2) activation of ATP-sensitive P2X receptors enhances the pressor response seen when muscle mechanoreceptors are engaged by muscle stretch. Thus, we hypothesized that the pressor response to VR1 stimulation would be smaller and the sensitizing effects of P2X stimulation greater in rats with HF due to chronic myocardial infarction (MI) than in controls. Methods and Results-Eight to 14 weeks after coronary ligation, rats with infarcts Ͼ35% had an increased left ventricular end-diastolic pressure and a marked increase in heart weight. Capsaicin injected into the arterial supply of the hindlimb increased blood pressure by 39% (baseline, 93.9Ϯ9.5 mm Hg) in control animals but only by 8% (baseline, 94.8Ϯ10.1 mm Hg) in rats with large MIs (PϽ0.05). P2X receptor stimulation by ␣,-methylene ATP enhanced the pressor response to muscle stretch by 42% in control animals and by 72% in rats with large MIs (PϽ0.05). Conclusions-Compared
Cardiovascular-related mortality peaks during cold winter months, particularly in older adults. Acute physiological responses, such as increases in blood pressure, in response to cold exposure may contribute to these associations. To determine whether the blood pressure-raising effect (pressor response) of non-internal body temperature-reducing cold stress is greater with age, we measured physiological responses to 20 min of superficial skin cooling, via water-perfused suit, in 12 younger [25 +/- 1 (SE) yr old] and 12 older (65 +/- 2 yr old) adults. We found that superficial skin cooling elicited an increase in blood pressure from resting levels (pressor response; P < 0.05) in younger and older adults. However, the magnitude of this pressor response (systolic and mean blood pressure) was more than twofold higher in older adults (P < 0.05 vs. younger adults). The magnitude of the pressor response was similar at peripheral (brachial) and central (estimated in the aorta) measurement sites. Regression analysis revealed that aortic pulse wave velocity, a measure of central arterial stiffness obtained before cooling, was the best predictor of the increased pressor response to superficial skin cooling in older adults, explaining approximately 63% of its variability. These results indicate that there is a greater pressor response to non-internal body temperature-reducing cold stress with age in humans that may be mediated by increased levels of central arterial stiffness.
Acid-sensing ion channels (ASICs) in sensory nerves are responsive to increases in the levels of protons in the extracellular medium. Prior studies suggest that the muscle metabolite, lactic acid, plays a role in reflex sympathetic and cardiovascular responses via stimulation of thin muscle afferent nerves. Also, femoral artery occlusion augments the reflex sympathetic nerve response in rats. ASIC3 is a main subtype to appear in sensory nerves in mediating the response induced by increases in protons in the interstitial space of contracting muscles. Thus, in this article, we hypothesized that femoral occlusion increases the expression of ASIC3 in primary afferent neurons innervating muscles, and this contributes to the exaggerated reflex sympathetic responses. Femoral occlusion/vascular insufficiency of the hindlimb muscles was induced by the femoral artery ligation in rats. First, Western blot analysis shows that 24-72 h of femoral artery ligation significantly increased the expression of ASIC3 protein in dorsal root ganglion (optical density, 1.0 ± 0.07 in control vs. 1.65 ± 0.1 after 24 h of occlusion, P < 0.05; n = 6 in each group). There were no significant differences for increases in ASIC3 24 and 72 h postocclusion. Second, experiments using fluorescent immunohistochemistry and retrograde-labeling technique show that a greater percentage of ASIC3 staining neurons are localized in muscle-innervating dorsal root ganglion neurons after the arterial occlusion (78 ± 3% in 24 h post occlusion vs. 59 ± 5% in control, P < 0.05; n = 6 in each group). Third, the reflex responses in renal sympathetic nerve and arterial blood pressure induced by the stimulation of ASIC were examined after an injection of lactic acid into the arterial blood supply of hindlimb muscles of control rats and ligated rats. The results demonstrate that the sympathetic and pressor responses to lactic acid were significantly augmented after femoral occlusion compared with those in the control group. The data of this study suggest that enhanced ASIC3 expression in muscle afferent nerves contributes to the exaggerated reflex sympathetic and pressor responses to lactic acid as seen in arterial occlusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.