Biochar soil amendment is advocated to mitigate climate change and improve soil fertility. A concern though, is that during biochar preparation PAHs and dioxins are likely formed. These contaminants can possibly be present in the biochar matrix and even bioavailable to exposed organisms. Here we quantify total and bioavailable PAHs and dioxins in a suite of over 50 biochars produced via slow pyrolysis between 250 and 900 °C, using various methods and biomass from tropical, boreal, and temperate areas. These slow pyrolysis biochars, which can be produced locally on farms with minimum resources, are also compared to biochar produced using the industrial methods of fast pyrolysis and gasification. Total concentrations were measured with a Soxhlet extraction and bioavailable concentrations were measured with polyoxymethylene passive samplers. Total PAH concentrations ranged from 0.07 μg g(-1) to 3.27 μg g(-1) for the slow pyrolysis biochars and were dependent on biomass source, pyrolysis temperature, and time. With increasing pyrolysis time and temperature, PAH concentrations generally decreased. These total concentrations were below existing environmental quality standards for concentrations of PAHs in soils. Total PAH concentrations in the fast pyrolysis and gasification biochar were 0.3 μg g(-1) and 45 μg g(-1), respectively, with maximum levels exceeding some quality standards. Concentrations of bioavailable PAHs in slow pyrolysis biochars ranged from 0.17 ng L(-1) to 10.0 ng L(-1)which is lower than concentrations reported for relatively clean urban sediments. The gasification produced biochar sample had the highest bioavailable concentration (162 ± 71 ng L(-1)). Total dioxin concentrations were low (up to 92 pg g(-1)) and bioavailable concentrations were below the analytical limit of detection. No clear pattern of how strongly PAHs were bound to different biochars was found based on the biochars' physicochemical properties.
Biochar is a promising technology for improving soil quality and sequestering C in the long term. Although modern pyrolysis technologies are being developed, kiln technologies often remain the most accessible method for biochar production. The objective of the present study was to assess biochar characteristics, stability in soil, and agronomic effects of a kiln‐produced biochar. Wheat‐straw biochar was produced in a double‐barrel kiln and analyzed by solid‐state 13C nuclear magneticresonance spectroscopy. Two experiments were conducted with biochar mixed into an Ap‐horizon sandy loam. In the first experiment, CO2 efflux was monitored for 3 mo in plant‐free soil columns across four treatments (0, 10, 50, and 100 Mg biochar ha−1). In the second experiment, ryegrass was grown in pots having received 17 and 54 Mg biochar ha−1 combined with four N rates from 144 to 288 kg N ha−1. Our kiln method generated a wheat‐straw biochar with carbon content composed of 92% of aromatic structures. Our results suggest that the biochar lost <0.16% C as CO2 over the 90‐d incubation period. Biomass yields were not significantly modified by biochar treatments, except for a slight decrease at the 144 kg N ha−1 rate. Foliar N concentrations were significantly reduced by biochar application. Biochar significantly increased soil water content; however, this increase did not result in increased biomass yield. In conclusion, our kiln‐produced biochar was highly aromatic and appeared quite recalcitrant in soil but had no overall significant impact on ryegrass yields.
Evaluating biochars for their persistence in soil under field conditions is an important step towards their implementation for carbon sequestration. Current evaluations might be biased because the vast majority of studies are short-term laboratory incubations of biochars produced in laboratory-scale pyrolyzers. Here our objective was to investigate the stability of a biochar produced with a medium-scale pyrolyzer, first through laboratory characterization and stability tests and then through field experiment. We also aimed at relating properties of this medium-scale biochar to that of a laboratory-made biochar with the same feedstock. Biochars were made of Miscanthus biomass for isotopic C-tracing purposes and produced at temperatures between 600 and 700°C. The aromaticity and degree of condensation of aromatic rings of the medium-scale biochar was high, as was its resistance to chemical oxidation. In a 90-day laboratory incubation, cumulative mineralization was 0.1% for the medium-scale biochar vs. 45% for the Miscanthus feedstock, pointing to the absence of labile C pool in the biochar. These stability results were very close to those obtained for biochar produced at laboratory-scale, suggesting that upscaling from laboratory to medium-scale pyrolyzers had little effect on biochar stability. In the field, the medium-scale biochar applied at up to 25 t C ha-1 decomposed at an estimated 0.8% per year. In conclusion, our biochar scored high on stability indices in the laboratory and displayed a mean residence time > 100 years in the field, which is the threshold for permanent removal in C sequestration projects.
Background Biochar-based fertilizer products (BCF) have been reported to increase both crop yield and N-use efficiency. Such positive effects are often assumed to result from the slow-release of N adsorbed on BCF structures. However, a careful review of the literature suggests that actual mechanisms remain uncertain, which hampers the development of efficient BCF products. Scope Here, we aim at reviewing BCF mechanisms responsible for enhanced N uptake by plants, and evaluate the potential for further improvement. We review the capacity of biochar structures to adsorb and release N forms, the biochar properties supporting this effect, and the methods that have been proposed to enhance this effect. Conclusions Current biochar products show insufficient sorption capacity for the retention of N forms to support the production of slow-release BCFs of high enough N concentration. Substantial slow-release effects appear to require conventional coating technology. Sorption capacity can be improved through activation and additives, but currently not to the extent needed for concentrated BCFs. Positive effects of commercial BCFs containing small amount of biochar appear to result from pyrolysis-derived biostimulants. Our review highlights three prospects for improving N retention: 1) sorption of NH3 gas on specifically activated biochar, 2) synergies between biochar and clay porosities, which might provide economical sorption enhancement, and 3) physical loading of solid N forms within biochar. Beyond proof of concept, quantitative nutrient studies are needed to ascertain that potential future BCFs deliver expected effects on both slow-release and N use efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.