[1] Peatland soils store substantial amounts of organic matter (OM). During peat formation, easily decomposable OM is preferentially lost and more recalcitrant moieties accumulate. In a peat profile, OM quality thus scales with depth. Drainage and ongoing climate change poses the risk of rapid OM loss when formerly anoxic peat layers oxidize. During peat decomposition, deeper, more recalcitrant peat is exposed to the oxygen-rich surface, which may influence the decomposition rate. We show that the soil respiration rate of a disturbed temperate peatland is strongly controlled by the peat's quality and especially its polysaccharides content. The polysaccharide content of soil profiles in a wider range of peatland sites with differing degrees of disturbance was inferred by means of solid-state 13 C NMR and DRIFT spectroscopy. The data confirmed a strong decline in polysaccharide content with depth and a poor OM quality of surface peat in soils drained decades ago. We combined the evidence from respiration and spectroscopic measurements to deduce the sensitivity of peatland carbon loss with respect to OM quality by scaling measured quality to a 142-years record of peatland subsidence and carbon loss at one of the sites. According to the functional relationship between quality and respiration, the measured average annual carbon loss rate of 2.5 t C ha À1 at that site was 20 t C ha À1 at the onset of peatland drainage and dropped to less than 1 t C ha À1 in recent times. Citation: Leifeld, J., M. Steffens, and A. Galego-Sala (2012), Sensitivity of peatland carbon loss to organic matter quality,
Accumulating evidence indicates that future rates of atmospheric N deposition have the potential to increase soil C storage by reducing the decay of plant litter and soil organic matter (SOM). Although the microbial mechanism underlying this response is not well understood, a decline in decay could alter the amount, as well as biochemical composition of SOM. Here, we used size-density fractionation and solid-state C-NMR spectroscopy to explore the extent to which declines in microbial decay in a long-term (ca. 20 yrs.) N deposition experiment have altered the biochemical composition of forest floor, bulk mineral soil, as well as free and occluded particulate organic matter. Significant amounts of organic matter have accumulated in occluded particulate organic matter (~20%; oPOM); however, experimental N deposition had not altered the abundance of carboxyl, aryl, alkyl, or O/N-alkyl C in forest floor, bulk mineral soil, or any soil fraction. These observations suggest that biochemically equivalent organic matter has accumulated in oPOM at a greater rate under experimental N deposition, relative to the ambient treatment. Although we do not understand the process by which experimental N deposition has fostered the occlusion of organic matter by mineral soil particles, our results highlight the importance of interactions among the products of microbial decay and the chemical and physical properties of silt and clay particles that occlude organic matter from microbial attack. Because oPOM can reside in soils for decades to centuries, organic matter accumulating under future rates of anthropogenic N deposition could remain in soil for long periods of time. If temperate forest soils in the Northern Hemisphere respond like those in our experiment, then unabated deposition of anthropogenic N from the atmosphere has the potential to foster greater soil C storage, especially in fine-texture forest soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.