Crohn’s disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of non-synonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2,066 CD cases and 3,633 healthy controls. We detected association signals in the LRRK2 gene that conferred CD risk (N2081D variant, P=9.5×10−10) or protection (N551K variant, tagging R1398H-associated haplotype, P=3.3×10−8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson’s disease (PD), and healthy controls revealed extensive pleiotropy, with similar genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant is associated with increased kinase activity, whereas neither N551K nor R1398H on the protective haplotype altered kinase activity. R1398H, but not N551K, increased GTPase activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.
Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and mediating genes for more than half such disorders remain to be discovered. We implemented whole-genome sequencing (WGS) in a national healthcare system to streamline diagnosis and to discover unknown aetiological variants, in the coding and non-coding regions of the genome. In a pilot study for the 100,000 Genomes Project, we generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 patients with detailed phenotypic data. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed aetiological. Using WGS of UK Biobank 1 , we showed that rare alleles can explain the presence of some individuals in the tails of a quantitative red blood cell (RBC) trait. Finally, we reported 4 novel non-coding variants which cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare. 3. Ferreira CR. The burden of rare diseases.
Rare variants in TREM2 cause susceptibility to late-onset Alzheimer's disease. Here we use microarray-based expression data generated from 101 neuropathologically normal individuals and covering 10 brain regions, including the hippocampus, to understand TREM2 biology in human brain. Using network analysis, we detect a highly preserved TREM2-containing module in human brain, show that it relates to microglia, and demonstrate that TREM2 is a hub gene in 5 brain regions, including the hippocampus, suggesting that it can drive module function. Using enrichment analysis we show significant overrepresentation of genes implicated in the adaptive and innate immune system. Inspection of genes with the highest connectivity to TREM2 suggests that it plays a key role in mediating changes in the microglial cytoskeleton necessary not only for phagocytosis, but also migration. Most importantly, we show that the TREM2-containing module is significantly enriched for genes genetically implicated in Alzheimer's disease, multiple sclerosis, and motor neuron disease, implying that these diseases share common pathways centered on microglia and that among the genes identified are possible new disease-relevant genes.
The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH.
The human microbiome is affected by multiple factors, including the environment and host genetics. In this study, we analyzed the salivary microbiomes of an extended family of Ashkenazi Jewish individuals living in several cities and investigated associations with both shared household and host genetic similarities. We found that environmental effects dominated over genetic effects. While there was weak evidence of geographical structuring at the level of cities, we observed a large and significant effect of shared household on microbiome composition, supporting the role of the immediate shared environment in dictating the presence or absence of taxa. This effect was also seen when including adults who had grown up in the same household but moved out prior to the time of sampling, suggesting that the establishment of the salivary microbiome earlier in life may affect its long-term composition. We found weak associations between host genetic relatedness and microbiome dissimilarity when using family pedigrees as proxies for genetic similarity. However, this association disappeared when using more-accurate measures of kinship based on genome-wide genetic markers, indicating that the environment rather than host genetics is the dominant factor affecting the composition of the salivary microbiome in closely related individuals. Our results support the concept that there is a consistent core microbiome conserved across global scales but that small-scale effects due to a shared living environment significantly affect microbial community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.