The purpose of this brief report is to convey the importance of ergonomic principles in the operating room, specific to laparoscopic surgery and surgeon injury/illness symptoms.
BackgroundAs the population of adults aged 65 and above is rapidly growing, it is crucial to identify physical and cognitive limitations pertaining to daily living. Cognitive fatigue has shown to adversely impact neuromuscular function in younger adults, however its impact on neuromuscular fatigue, and associated brain function changes, in older adults is not well understood. The aim of the study was to examine the impact of cognitive fatigue on neuromuscular fatigue and associated prefrontal cortex (PFC) activation patterns in older women.MethodsEleven older (75.82 (7.4) years) females attended two sessions and performed intermittent handgrip exercises at 30 % maximum voluntary contraction (MVC) until voluntary exhaustion after a 60-min control (watching documentary) and 60-min cognitive fatigue (performing Stroop Color Word and 1-Back tests) condition. Dependent measures included endurance time, strength loss, PFC activity (measured using fNIRS), force fluctuations, muscle activity, cardiovascular responses, and perceived discomfort.ResultsParticipants perceived greater cognitive fatigue after the 60-min cognitive fatigue condition when compared to the control condition. While neuromuscular fatigue outcomes (i.e., endurance time, strength loss, perceived discomfort), force fluctuations, and muscle activity were similar across both the control and cognitive fatigue conditions, greater decrements in PFC activity during neuromuscular fatigue development after the cognitive fatigue condition were observed when compared to the control condition.ConclusionDespite similar neuromuscular outcomes, cognitive fatigue was associated with blunted PFC activation during the handgrip fatiguing exercise that may be indicative of neural adaptation with aging in an effort to maintain motor performance. Examining the relationship between cognitive fatigue and neuromuscular output by imaging other motor-related brain regions are needed to provide a better understanding of age-related compensatory adaptations to perform daily tasks that involve some levels of cognitive demand and physical exercise, especially when older adults experience them sequentially.
Background: Research shows that students who are more active throughout the day have fewer reports of body part discomfort and greater energy expenditure needed to combat childhood obesity. Many factors may contribute to the overall health of the child, including the postures that are required to complete assigned tasks at their school workstations. Decreasing sedentary behaviors in children through the use of standing desks at school has been shown to increase calorie expenditure and may be a viable approach to the energy imbalance typical of modern children. The objective of this research was to quantify and analyze sub-optimal postures and self-reported discomfort of students during the use of traditional seated and standbiased desks to determine whether any unintended consequences of the intervention were present. Methods: A postural analysis based on the Portable Ergonomic Observation (PEO) method was used to assess the posture of 42 elementary school students as they worked at their assigned workstation (either standing or seated). Two classrooms contained stand-biased workstations (15 students) and two classrooms had traditional seated workstations (27 students). Each student was assessed three times at 10 minutes, for a total of 30 minutes of observations each. The percent of time spent in preferred versus non-preferred postures was then computed. Student body part discomfort surveys were used to assess the discomfort of students between the two groups. The relationship between type of workstation and percent time in non-preferred postures and body discomfort was examined using Wilcoxon ranksum tests and Fisher's exact tests, respectively. The significance level was p ≤ 0.05 for all of the two-sided tests. Results: No significant difference was found between the two groups and time spent in non-preferred postures and body discomfort, children using stand-biased workstations reported less discomfort overall. Standbiased desks presented no additional ergonomic issues, while providing increased caloric expenditure. Conclusions: A study containing a larger sample and older children that includes postural observation throughout the school day is needed for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.