Pulsed power accelerators compress electrical energy in space and time to provide versatile experimental platforms for high energy density and inertial confinement fusion science. The 80-TW “Z” pulsed power facility at Sandia National Laboratories is the largest pulsed power device in the world today. Z discharges up to 22 MJ of energy stored in its capacitor banks into a current pulse that rises in 100 ns and peaks at a current as high as 30 MA in low-inductance cylindrical targets. Considerable progress has been made over the past 15 years in the use of pulsed power as a precision scientific tool. This paper reviews developments at Sandia in inertial confinement fusion, dynamic materials science, x-ray radiation science, and pulsed power engineering, with an emphasis on progress since a previous review of research on Z in Physics of Plasmas in 2005.
Discrete helical modes have been experimentally observed from implosion to explosion in cylindrical, axially magnetized ultrathin foils (Bz = 0.2 – 2.0 T) using visible self-emission and laser shadowgraphy. The striation angle of the helices, ϕ, was found to increase during the implosion and decrease during the explosion, despite the large azimuthal magnetic field (>40 T). These helical striations are interpreted as discrete, non-axisymmetric eigenmodes that persist from implosion to explosion, obeying the simple relation ϕ = m/kR, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius, respectively. Experimentally, we found that (a) there is only one, or at the most two, dominant unstable eigenmode, (b) there does not appear to be a sharp threshold on the axial magnetic field for the emergence of the non-axisymmetric helical modes, and (c) higher axial magnetic fields yield higher azimuthal modes.
In this research, we generated helical instability modes using unseeded and kink-seeded, nonimploding liner-plasmas at the 1 MA Linear Transformer Driver facility at the University of Michigan in order to determine the effects of externally applied, axial magnetic fields. In order to minimize the coupling of sausage and helical modes to the magneto Rayleigh-Taylor instability, the 400 nm-thick aluminum liners were placed directly around straight-cylindrical (unseeded) or threaded-cylindrical (kink-seeded) support structures to prevent implosion. The evolution of the instabilities was imaged using a combination of laser shadowgraphy and visible self-emission, collected by a 12-frame fast intensified CCD camera. With no axial magnetic field, the unseeded liners developed an azimuthally correlated m ¼ 0 sausage instability (m is the azimuthal mode number). Applying a small external axial magnetic field of 1.1 T (compared to peak azimuthal field of 30 T) generated a smaller amplitude, helically oriented instability structure that is interpreted as an m ¼ þ2 helical mode. The kink-seeded liners showed highly developed helical structures growing at the seeded wavelength of k ¼ 1.27 mm. It was found that the direction of the axial magnetic field played an important role in determining the overall stabilization effects; modes with helices spiraling in the opposite direction of the global magnetic field showed the strongest stabilization. Finally, the Weis-Zhang analytic theory [Weis et al., Phys. Plasmas 22, 032706 (2015)] is used to calculate sausage and helical growth rates for experimental parameters in order to study the effects of axial magnetic fields.
In this paper, we present experimental results on axially magnetized (B z ¼ 0.5-2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with $600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or antiparallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m ¼ 1 or m ¼ 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m ¼ 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.