Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations.
We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow ( 1 s) Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses ( 1 s) required to drive z pinches. The other is powered by linear transformer drivers (LTDs), which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time) more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i) 300 Marx generators that comprise a total of 1:8 10 4 capacitors, store 98 MJ, and erect to 5 MV; (ii) 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii) 600 5-MV laser-triggered gas switches; (iv) three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v) a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi) six magnetically insulated vacuum transmission lines (MITLs); and (vii) a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210 LTD modules that include a total of 1 10 6 capacitors and 5 10 5 200-kV electrically triggered gas switches. The LTD accelerator stores 182 MJ and produces a peak electrical power of 1000 TW. The accelerator delivers an effective peak current of 68 MA to a pinch that implodes in 95 ns, and 75 MA to a pinch that implodes in 120 ns. Conceptually straightforward upgrades to these designs would deliver even higher pinch currents and faster implosions.
We describe the injtial experiments to study the Z-pinch-drjven hohlraum ligh-yield jnertjal confinement fusion (ICF) concept of Hammer and Porter [J. H. Hammer et al., Phys. Plasmas, 6, 2129]. We show that the relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ("hohlraurn energetic") is well understood from O-D semi-analytic, 2-D viewfactor, and 2-D radiation magneto-hydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pjnch driven secondary (2655 TW), indicating the concept could scale to fusion yields of 400 MJ. We have also developed a novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry. This source wjll perrnjt investigation of the pinch power balance and hohh-aum geometry requirements for ICF reIevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [R. B.Spielman. er al.. Phys. Plasmas. 5,2105Plasmas. 5, (1998].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.