A theory for intraseasonal atmosphere–ocean–atmosphere feedback is supported whereby oceanic equatorial Rossby waves are partly forced in the eastern Indian Ocean by the Madden–Julian oscillation (MJO), reemerge in the western Indian Ocean ~70 days later, and force large-scale convergence in the atmospheric boundary layer that precedes MJO deep convection. Downwelling equatorial Rossby waves permit high sea surface temperature (SST) and enhance meridional and zonal SST gradients that generate convergent circulations in the atmospheric boundary layer. The magnitude of the SST and SST gradient increases are 0.25°C and 1.5°C Mm−1 (1 megameter is equal to 1000 km), respectively. The atmospheric circulations driven by the SST gradient are estimated to be responsible for up to 45% of the intraseasonal boundary layer convergence observed in the western Indian Ocean. The SST-induced boundary layer convergence maximizes 3–4 days prior to the convective maximum and is hypothesized to serve as a trigger for MJO deep convection. Boundary layer convergence is shown to further augment deep convection by locally increasing boundary layer moisture. Warm SST anomalies facilitated by downwelling equatorial Rossby waves are also associated with increased surface latent heat fluxes that occur after MJO convective onset. Finally, generation of the most robust downwelling equatorial Rossby waves in the western Indian Ocean is shown to have a distinct seasonal distribution.
During boreal summer (June-October), interactions between intraseasonal variability in the EasternHemisphere and east Pacific warm pool are often described as a local amplification of the Madden-Julian oscillation (MJO), the dominant mode of tropical intraseasonal variability. The MJO in the Eastern Hemisphere emits eastward-propagating dry Kelvin waves that are a source of rapid communication with the east Pacific. However, the precise mechanism by and degree to which intraseasonal variability in the Eastern Hemisphere interacts with the east Pacific are not well understood. To quantify the relationship, sensitivity tests in two separate models are used: the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) and the International Pacific Research Center Regional Atmosphere Model (IRAM). Different methods are employed to isolate the east Pacific from outside intraseasonal signals in each model. When isolated from Kelvin wave fronts associated with the MJO, the CAM produces similar east Pacific intraseasonal variability to observations. In the CAM, the communication of intraseasonal signals by Kelvin waves does not appear necessary to the initiation and maintenance of east Pacific intraseasonal variability, suggesting that such events can be independent of the MJO. However, communication by MJO-initiated Kelvin waves provides a possible phase locking mechanism between hemispheres. When the east Pacific is isolated from all remote intraseasonal signals in the IRAM, intraseasonal events there are weak and incoherent. In the IRAM communication across the Pacific appears necessary to the representation of east Pacific intraseasonal variability. However, the IRAM contains an important bias in the climatological low-level winds that may suppress east Pacific intraseasonal events.
A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden‐Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s−1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.
During the intraseasonal oscillation (ISO) in the tropical Indian Ocean, a recent study observed an interesting relationship between atmospheric convection and ocean heat content anomalies. Ocean heat content anomalies maximize during periods of enhanced convection. Using that study as motivation, the processes responsible for this behavior are further investigated using satellite observations and a state‐of‐the‐art ocean reanalysis. These data show that ocean dynamics linked to first baroclinic mode equatorial Rossby (ER) waves are responsible for the routine synchronization of anomalous ocean heat content and atmospheric convection during the ISO. Using a novel index to identify oceanic ER waves in the Indian Ocean, we observe the following sequence of events indicative of two‐way feedbacks between large‐scale intraseasonal modes in the atmosphere and ocean: (a) Westerly wind stress associated with the enhanced convective phase of the ISO piles mass in the eastern Indian Ocean forcing a westward oriented pressure gradient along the equator. (b) The easterly wind stress that immediately follows combines with the pressure gradient forcing to generate downwelling ER waves that slowly propagate westward. (c) The waves maximize in the central Indian Ocean where they depress the isotherms and increase the ocean heat content as the next enhanced convective phase of the ISO passes and intensifies. The entire feedback loop transpires over 90 days.
Processes associated with the local amplification of easterly waves (EWs) in the east Pacific warm pool are explored. Developing EWs favor convection in the southwest and northeast quadrants of the disturbance. In nascent EWs, convection favors the southwest quadrant. As the EW life cycle progresses, convection in the northeast quadrant becomes increasingly prominent and southwest quadrant convection wanes. The EW moisture budget reveals that anomalous meridional winds acting on the mean meridional moisture gradient of the ITCZ produce moisture anomalies supportive of convection in the southwest quadrant early in the EW life cycle. As EWs mature, moisture anomalies on the poleward side of the EW begin to grow and are supported by the advection of anomalous moisture by the mean zonal wind. In the southwest and northeast portions of the wave, where convection anomalies are favored, lower-tropospheric vorticity is generated locally through vertical stretching that supports a horizontal tilt of the wave from the southwest to the northeast. EWs with such tilts are then able to draw energy via barotropic conversion from the background cyclonic zonal wind shear present in the east Pacific. Convection anomalies associated with EWs vary strongly with changes in the background intraseasonal state. EWs during westerly and neutral intraseasonal periods are associated with robust convection anomalies. Easterly intraseasonal periods are, at times, associated with very weak EW convection anomalies because of weaker moisture and diluted CAPE variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.