SARS-CoV-2 spike antigen-specific IgG and IgA elicited by infection mediate viral neutralization and are likely an important component of natural immunity, however, limited information exists on vaccine induced responses. We measured COVID-19 mRNA vaccine induced IgG and IgA in serum serially, up to 145 days post vaccination in 4 subjects. Spike antigen-specific IgG levels rose exponentially and plateaued 21 days after the initial vaccine dose. After the second vaccine dose IgG levels increased further, reaching a maximum approximately 7–10 days later, and remained elevated (average of 58% peak levels) during the additional >100 day follow up period. COVID-19 mRNA vaccination elicited spike antigen-specific IgA with similar kinetics of induction and time to peak levels, but more rapid decline in serum levels following both the 1st and 2nd vaccine doses (<18% peak levels within 100 days of the 2nd shot). The data demonstrate COVID-19 mRNA vaccines effectively induce spike antigen specific IgG and IgA and highlight marked differences in their persistence in serum.
Diisocyanates are asthma-causing chemicals used in the commercial production of polyurethane. We have previously shown that human lung epithelial cell proteins can become conjugated with hexamethylene diisocyanate (HDI) and may be biologically important in diisocyanate-induced asthma. The objective of this study was to identify specific human lung and skin proteins that become conjugated with diisocyanate after in vitro and in vivo exposure. Following in vitro exposure of human airway epithelial cells (A549), keratin 18, the 78-kD glucose-regulated protein, trans-1, 2-dihyrobenzene-1,2-diol dehydrogenase, and actin were identified as prominent diisocyanate-conjugated proteins through use of a combination of immunocytochemical and mass spectrometric techniques. Following in vivo inhalation of an HDI aerosol, keratin 18 was also identified as the predominant diisocyanate-conjugated protein in human endobronchial biopsy samples, whereas albumin was the predominant diisocyanate-conjugated protein in bronchoalveolar lavage fluid. Keratin was also identified as a predominant diisocyanate-conjugated protein in human skin biopsy samples after epicutaneous exposure to liquid-phase HDI, although the major skin diisocyanate-conjugated protein (56-kD) differed from the predominant lung diisocyanate-conjugated keratin (47-kD). The data from this study identify keratin and other proteins as potential "carriers" for diisocyanates in vivo, and suggest that HDI conjugation of these proteins may play a role in the pathogenesis of diisocyanate-induced asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.