Diisocyanates are asthma-causing chemicals used in the commercial production of polyurethane. We have previously shown that human lung epithelial cell proteins can become conjugated with hexamethylene diisocyanate (HDI) and may be biologically important in diisocyanate-induced asthma. The objective of this study was to identify specific human lung and skin proteins that become conjugated with diisocyanate after in vitro and in vivo exposure. Following in vitro exposure of human airway epithelial cells (A549), keratin 18, the 78-kD glucose-regulated protein, trans-1, 2-dihyrobenzene-1,2-diol dehydrogenase, and actin were identified as prominent diisocyanate-conjugated proteins through use of a combination of immunocytochemical and mass spectrometric techniques. Following in vivo inhalation of an HDI aerosol, keratin 18 was also identified as the predominant diisocyanate-conjugated protein in human endobronchial biopsy samples, whereas albumin was the predominant diisocyanate-conjugated protein in bronchoalveolar lavage fluid. Keratin was also identified as a predominant diisocyanate-conjugated protein in human skin biopsy samples after epicutaneous exposure to liquid-phase HDI, although the major skin diisocyanate-conjugated protein (56-kD) differed from the predominant lung diisocyanate-conjugated keratin (47-kD). The data from this study identify keratin and other proteins as potential "carriers" for diisocyanates in vivo, and suggest that HDI conjugation of these proteins may play a role in the pathogenesis of diisocyanate-induced asthma.
Membrane glycoproteins of alphavirus play a critical role in the assembly and budding of progeny virions. However, knowledge regarding transport of viral glycoproteins to the plasma membrane is obscure. In this study, we investigated the role of cytopathic vacuole type II (CPV-II) through in situ electron tomography of alphavirus-infected cells. The results revealed that CPV-II contains viral glycoproteins arranged in helical tubular arrays resembling the basic organization of glycoprotein trimers on the envelope of the mature virions. The location of CPV-II adjacent to the site of viral budding suggests a model for the transport of structural components to the site of budding. Thus, the structural characteristics of CPV-II can be used in evaluating the design of a packaging cell line for replicon production.Semliki Forest virus (SFV) is an enveloped alphavirus belonging to the family Togaviridae. This Tϭ4 icosahedral virus particle is approximately 70 nm in diameter (30) and consists of 240 copies of E1/E2 glycoprotein dimers (3,8,24). The glycoproteins are anchored in a host-derived lipid envelope that encloses a nucleocapsid, made of a matching number of capsid proteins and a positive single-stranded RNA molecule. After entry of the virus via receptor-mediated endocytosis, a low-pH-induced fusion of the viral envelope with the endosomal membrane delivers the nucleocapsid into the cytoplasm, where the replication events of SFV occur (8,19,30). Replication of the viral genome and subsequent translation into structural and nonstructural proteins followed by assembly of the structural proteins and genome (7) lead to budding of progeny virions at the plasma membrane (18,20). The synthesis of viral proteins shuts off host cell macromolecule synthesis, which allows for efficient intracellular replication of progeny virus (7). The expression of viral proteins leads to the formation of cytopathic vacuolar compartments as the result of the reorganization of cellular membrane in the cytoplasm of an infected cell (1,7,14).Early studies using electron microscopy (EM) have characterized the cytopathic vacuoles (CPVs) in SFV-infected cells (6,13,14) and identified two types of CPV, namely, CPV type I (CPV-I) and CPV-II. It was found that CPV-I is derived from modified endosomes and lysosomes (18), while CPV-II is derived from the trans-Golgi network (TGN) (10, 11). Significantly, the TGN and CPV-II vesicles are the major membrane compartments marked with E1/E2 glycoproteins (9, 11, 12). Inhibition by monensin results in the accumulation of E1/E2 glycoproteins in the TGN (12, 26), thereby indicating the origin of CPV-II. While CPV-II is identified as the predominant vacuolar structure at the late stage of SFV infection, the exact function of this particular cytopathic vacuole is less well characterized than that of CPV-I (2, 18), although previous observations have pointed to the involvement of CPV-II in budding, because an associated loss of viral budding was observed when CPV-II was absent (9,36).In this study, we characte...
The spectral sensitivities of retinal cones isolated from goldfish (Carassius auratus) retinas were measured in the range 277-737 nm by recording membrane photocurrents with suction pipette electrodes (SPE). Cones were identified with lambda max (+/- S.D.) at 623 +/- 6.9 nm, 537 +/- 4.7 nm, 447 +/- 7.7 nm, and about 356 nm (three cells). Two cells (lambda max 572 and 576 nm) possibly represent genetic polymorphism. A single A2 template fits the alpha-band of P447(2), P537(2), and P623(2). HPLC analysis showed 4% retinal:96% 3-dehydroretinal. Sensitivity at 280 nm is nearly half that at the lambda max in the visible. The lambda max of the beta-band (in nm) is a linear function of the lambda max of the alpha-band and follows the same relation as found for A1-based cone pigments of a cyprinid fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.