As rock bursts are unavoidable in deep mines and excavations with high in-situ stresses, ground support systems are implemented to manage and mitigate rock bursts. Cable bolts are commonly used as reinforcing elements in ground support systems, which are subject to dynamic loads in burst-prone excavations. To design an efficient cable bolt in burst-prone conditions, shear and energy absorption capacity must be considered. Numerical modelling is an advantageous method of repeatable testing and it is inexpensive and non-destructive. This study develops a statically and dynamically loaded numerical model of a double shear test in ABAQUS/Explicit. A total of 36 static and 576 dynamic tests are carried out, which examine the influence of bolt diameter, steel yield and ultimate strength, dynamic load velocity and dynamic load mass on the displacement, shear force and energy absorption capacity of cable bolts. As bolt diameter and steel yield strength increases, the maximum shear force resisted and bolt displacement increases. Similarly, as the mass and velocity of the dynamic load increases, the amount of energy absorbed by the cable bolt increases. The main novelty of the current research is to suggest a reliable computational tool to investigate the influence of the different key parameters in the cable bolts on the ultimate capacity. The suggested method is a significantly cost-effective technique compared with the experimental investigations.
Rock bursts are a natural phenomenon that are caused by high stresses and faults within the deep geological profile. The framework within deep mining excavations, comprising various rock and face supports such as cable bolts, is required to withstand rock bursts. These mechanisms are subject to static and dynamic loading conditions which possess unique challenges. This study focused on the shearing impact of static loads on cable bolts, a key structural support mechanism designed to absorb energy and investigate the impacts of bolt diameter and strength. A double shear test was modelled using the Finite Element Analysis (FEA) software ABAQUS/Explicit. A double shear test was modelled using Finite Element Modelling (FEM) by creating individual parts, assigning material and contact properties and applying a load directly on the central block. Because ABAQUS/Explicit was used, a primarily dynamic analysis tool, quasi-static loading, was applied to negate the natural time scale. A total of six bolt diameters and six bolt strengths were tested. A positive correlation was exhibited between the bolt diameter, yield strength and the maximum force and displacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.