The Reinga Basin northwest of the North Island of New Zealand was initially formed by crustal extension in Cretaceous time. Gravity models suggest up to 35-40% crustal thinning. The seismic stratigraphy of the basin is continuous with that of the offshore western North Island, where reflectors are well constrained by oil exploration data. In the Reinga Basin, there are two Cretaceous sequences above an older Mesozoic basement. The lower sequence is apparently terrestrial and may include both pre-rift and synrift subsequences; the upper is a rift-filling marine sequence. These are overlain by Paleocene and Eocene blanket sequences that were laid down during a period of relative tectonic quiescence consistent with cooling subsidence, continued submergence, a northeast-facing continental shelf, and absence of a significant active plate boundary. A strong regional reflector, caused by a combined unconformity and G97011Received 13 February 1997; accepted 14 August 1997 Oligocene condensed sequence, separates the Paleogene and Neogene sequences.The Neogene sequences record sedimentary infill from several source directions, not only from the New Zealand landmass, but from the north and west as well. Near the Northland coast, sediment accumulated in clastic wedges and ponded sub-basins from the Miocene to the present day. Along the flanking ridges to the northwest, similar deposition occurred in the Early and Middle Miocene but changed in the Late Miocene to sedimentation in drifts flanked by scours. This change reflects the end of tectonism, a diminishing clastic sediment supply, and the establishment of a throughgoing oceanic current regime as the marginal ridges submerged. This pattern of sedimentation persists today.Post-Cretaceous volcanism occurred in two parts of the basin. In the central southeastern part, volcanic bodies in the ?Oligocene to Early Miocene sequences could be a northwestern extension of the Northland volcanic arc. In the western part, small intrusive and extrusive bodies appear to be of Pliocene intraplate origin.Compression (or transpression) had an important role in developing the basin's present form. Miocene compressional structures-asymmetric anticlines, reverse faults, everted basins, and pop-ups-are present everywhere but at the southeastern end. The present marginal ridges have structurally complex origins. The Reinga Ridge which forms the northeastern margin is a transform boundary with the Norfolk backarc basin. Deformation thought to be caused by the action of the transform is recorded in folded and faulted Cretaceous-Paleogene sequences and syntectonic Early and Middle Miocene sequences along its length. The southwestern margin of the basin is a double ridge comprising the Wanganella Ridge, an early Middle to early Late Miocene, compressional uplift, and the older, eroded West Norfolk Ridge, which contains Cretaceous halfgrabens. The northern half of the Wanganella Ridge is an everted ?Oligocene to Early Miocene aulacogen in which slivers of basement rock were thrust up alo...
The crystalline structure and dielectric properties of Sm1.5Sr0.5NiO4 ceramics are presented. The present ceramics is refined as orthorhombic Bmab phase and the orthorhombic strain may change the statue of charge ordering. The temperature-stable giant dielectric constant (∼100 000) with low dielectric loss of ∼0.1 is observed at frequency up to 5 MHz over a broad range of temperature (150–500 K) and frequency (100 kHz–5 MHz). The grain interior should be the dominative factor which contributes the giant dielectric response in the present ceramics after the equivalent circuit fitting, and the thermal activated small polaronic hopping related to the charge ordering is that factor. Compared to other giant dielectric materials, the present materials have a great potential in the practical application, especially for the high frequency application.
Dielectric relaxations of charge-ordered Ln1.5Sr0.5NiO4 (Ln=La and Nd) ceramics were investigated over a broad temperature range. The giant dielectric constant (over 70 000) with a low dielectric loss of ∼0.1 was determined at high frequencies (up to 5 MHz) over a broad temperature range. There are two dielectric relaxations in the vicinity of charge ordering temperatures. The thermal activated small polaronic hopping between two charge ordering temperatures should contribute to the giant dielectric response in the present ceramics. Compared to other giant dielectric constant materials, the present materials have the notable advantage for high frequency applications.
To elucidate whether the endometriotic cells of endometriomas synthesize transforming growth factor beta1 (TGF-beta1) and understand how it affects surrounding ovarian tissue. We collected biopsies of the cystic walls from 42 endometriomas and 29 mature teratomas and compared mRNA and protein expression of fibrosis-related factors between the cystic walls. Then we detected TGFB1 mRNA synthesis in endometriomas, and tested TGF-beta1 fibrotic effect in vitro. Moreover, we verified the expression of Smad2/3 signaling components in the endometriotic cystic wall in order to understand whether TGF-beta1/Smad signaling is involved in fibrosis formation of the tissue surrounding endometriomas. The cystic walls from endometriomas demonstrated severe adhesion to ovarian tissue and obvious fibrosis compared with the mature teratomas, which was proven by the increased mRNA expression of fibrotic markers. Additionally, TGFB1 was obviously expressed in the endometriotic cystic wall, and total TGFB1 protein was significantly higher in the cystic walls of endometriomas than mature teratomas. Interestingly, TGFB1 mRNA was confirmed to be specifically synthesized in the endometriotic loci through fluorescence in situ hybridization. Cultured endometriomas derived stromal cells showed obvious fibrosis after exposed to TGF-beta1. Furthermore, components of the TGF-beta1/Smad pathway such as Smad2, Smad3, Smad4, and their phosphorylated forms were also expressed in the same location as TGF-beta1, TGF-beta receptor1, and fibrotic factors expressed in the endometriotic cystic walls. In summary, endometriotic cells of endometriomas synthesize TGF-beta1 leading to fibrosis and adhesion to ovarian tissues, and TGF-beta1/Smad signaling pathway is involved in this pathological process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.