BackgroundSome patients awaken from coma (that is, open the eyes) but remain unresponsive (that is, only showing reflex movements without response to command). This syndrome has been coined vegetative state. We here present a new name for this challenging neurological condition: unresponsive wakefulness syndrome (abbreviated UWS).DiscussionMany clinicians feel uncomfortable when referring to patients as vegetative. Indeed, to most of the lay public and media vegetative state has a pejorative connotation and seems inappropriately to refer to these patients as being vegetable-like. Some political and religious groups have hence felt the need to emphasize these vulnerable patients' rights as human beings. Moreover, since its first description over 35 years ago, an increasing number of functional neuroimaging and cognitive evoked potential studies have shown that physicians should be cautious to make strong claims about awareness in some patients without behavioral responses to command. Given these concerns regarding the negative associations intrinsic to the term vegetative state as well as the diagnostic errors and their potential effect on the treatment and care for these patients (who sometimes never recover behavioral signs of consciousness but often recover to what was recently coined a minimally conscious state) we here propose to replace the name.ConclusionSince after 35 years the medical community has been unsuccessful in changing the pejorative image associated with the words vegetative state, we think it would be better to change the term itself. We here offer physicians the possibility to refer to this condition as unresponsive wakefulness syndrome or UWS. As this neutral descriptive term indicates, it refers to patients showing a number of clinical signs (hence syndrome) of unresponsiveness (that is, without response to commands) in the presence of wakefulness (that is, eye opening).
Epileptic activity is frequently associated with Alzheimer’s disease; this association has therapeutic implications, because epileptic activity can occur at early disease stages and might contribute to pathogenesis. In clinical practice, seizures in patients with Alzheimer’s disease can easily go unrecognised because they usually present as non-motor seizures, and can overlap with other symptoms of the disease. In patients with Alzheimer’s disease, seizures can hasten cognitive decline, highlighting the clinical relevance of early recognition and treatment. Some evidence indicates that subclinical epileptiform activity in patients with Alzheimer’s disease, detected by extended neurophysiological monitoring, can also lead to accelerated cognitive decline. Treatment of clinical seizures in patients with Alzheimer’s disease with select antiepileptic drugs (AEDs), in low doses, is usually well tolerated and efficacious. Moreover, studies in mouse models of Alzheimer’s disease suggest that certain classes of AEDs that reduce network hyperexcitability have disease-modifying properties. These AEDs target mechanisms of epileptogenesis involving amyloid β and tau. Clinical trials targeting network hyperexcitability in patients with Alzheimer’s disease will identify whether AEDs or related strategies could improve their cognitive symptoms or slow decline.
We propose that transient epileptic amnesia is a distinctive epilepsy syndrome, typically misdiagnosed at presentation and associated with accelerated long-term forgetting and autobiographical amnesia. The syndrome is of clinical and theoretic importance.
Consciousness is topical, for reasons including its renewed respectability among psychologists, rapid progress in the neuroscience of perception, memory and action, advances in artificial intelligence and dissatisfaction with the dualistic separation of mind and body. Consciousness is an ambiguous term. It can refer to (i) the waking state; (ii) experience; and (iii) the possession of any mental state. Self-consciousness is equally ambiguous, with senses including (i) proneness to embarrassment in social settings; (ii) the ability to detect our own sensations and recall our recent actions; (iii) self-recognition; (iv) the awareness of awareness; and (v) self-knowledge in the broadest sense. The understanding of states of consciousness has been transformed by the delineation of their electrical correlates, of structures in brainstem and diencephalon which regulate the sleep-wake cycle, and of these structures' cellular physiology and regional pharmacology. Clinical studies have defined pathologies of wakefulness: coma, the persistent vegetative state, the 'locked-in' syndrome, akinetic mutism and brain death. Interest in the neural basis of perceptual awareness has focused on vision. Increasingly detailed neuronal correlates of real and illusory visual experience are being defined. Experiments exploiting circumstances in which visual experience changes while external stimulation is held constant are tightening the experimental link between consciousness and its neural correlates. Work on unconscious neural processes provides a complementary approach. 'Unperceived' stimuli have detectable effects on neural events and subsequent action in a range of circumstances: blindsight provides the classical example. Other areas of cognitive neuroscience also promise experimental insights into consciousness, in particular the distinctions between implicit and explicit memory and deliberate and automatic action. Overarching scientific theories of consciousness include neurobiological accounts which specify anatomical or physiological mechanisms for awareness, theories focusing on the role played by conscious processes in information processing and theories envisaging the functions of consciousness in a social context. Whether scientific observation and theory will yield a complete account of consciousness remains a live issue. Physicalism, functionalism, property dualism and dual aspect theories attempt to do justice to three central, but controversial, intuitions about experience: that it is a robust phenomenon which calls for explanation, that it is intimately related to the activity of the brain and that it has an important influence on behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.