This article presents a modelling study of external magnetic field effect on a bifacial silicon solar cell's electric power and conversion efficiency. After the resolution of the magnetotransport equation and continuity equation of excess minority carriers, we calculate the photocurrent density and the photovoltage and then we deduce the solar cell's electric power before discussing the influence of the magnetic field on those electrical parameters. Using the electric power curves versus junction dynamic velocity we determine the maximum electric power, the operating point of the solar cell, and the conversion efficiency according to magnetic field intensity. The numerical data show that the solar cell's maximum electric power and conversion efficiency decrease with magnetic field intensity.
One-dimensional study of both electronic and electrical parameters of a silicon solar cell in the presence or not of an electric field, a magnetic field, or an electromagnetic field does not take into account the grain size and the grain boundary recombination velocity. A three-dimensional study, on the contrary, takes those factors into account.However, the three-dimensional study poses the problem of the attenuation of the wave in the grain of the polycrystalline solar cell as well as the issue of finding the expressions of its components. This study aimed to solve these issues by considering radio waves, which are becoming more and more present in our environment via telecommunication masts.We first obtained the expressions of both the electric field and magnetic field in a grain of a polycrystalline silicon solar cell by solving the dispersion equation. Then we investigated the evolution of the radio wave into the grain by analyzing the behavior of the exponential coefficient that appeared in the expressions of both the electric field and the magnetic field. The study has shown that the attenuation of the radio wave can be neglected through the polycrystalline silicon solar grain and by extension through the polycrystalline silicon solar cell.
Studies on concentrated light influence do not take into account the effect of the heating and this proves to be harmful on photovoltaic parameters. The main purpose of this work is to study the effects of light concentration and the heating caused by this concentration on intrinsic properties and carrier density profile. A thermal model of the PV cell is proposed. By applying the power balance at the steady-state, the PV cell thermal equation is determined. The resolution of this equation leads to temperature profile which shows a rapid increase with light concentration. The mobility n and diffusion n D coefficients of electrons increase to reach their maxima, respectively 2 1 1 max ( ) 1895,31 n cm V s at C=6,77 Suns where temperature is T=430,92 K and 21 max ( ) 76,55 . n D cm s at C= 12,59 Suns where temperature is T=508,24; before decreasing. However, for the holes these parameters decrease slowly with concentration increase. Silicon gap energy decreases while electrons intrinsic density increases with increasing concentration. The variations of these parameters are explained on one hand by their dependence on temperature but also by temperature profile with concentration. An electrical model of the PV cell under variable concentration is also proposed and from which the carrier's density is determined. It emerges that the carrier density increases significantly with concentration ratio. This fact is explained by the photo-generation increase with concentration. And also, by thermal generation increase linked to temperature increases with concentration increase. Results also show that carriers density is greater in the rear side compared to the zone near the junction in opposite to authors who did not take into account temperature effect and who showed that carriers density is greater at the illuminated face.
The Photovoltaic (PV) system is often installed near the telecommunication antenna without takes account the performance degradation that the electromagnetic field can cause. The present work provides the recognition about the greatest losses occur which can cause the overall efficiency drop. In fact, the absorption and the thermodynamic processes are more sensitive to the variation of the electromagnetic field more than FF and thermalization processes in presence of the electromagnetic field. The absorption and thermodynamic mechanism are the main cause of the degradation of the polycrystalline silicon PV cell outputs. The PV cell having height base doping level to get a better resistivity to the electromagnetic field must be chosen to improve theses outputs. Then a low electromagnetic field zones must be searched to install the PV system improving its electrical production performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.