This work, presents the intense light effect on electrical parameters of silicon solar such as short circuit current, open circuit voltage, series and shunt resistances, maximum power, conversion efficiency, fill factor. After the resolution of the continuity equation which leads to the solar cell photocurrent and photovoltage expressions, we use the J/V characteristic to determine the solar cell series and shunt resistances. The maximum electric power of the solar cell is determined using the curves of electric power versus junction dynamic velocity, and then, the fill factor and conversion efficiency are calculated. Light concentration and junction dynamic velocity effects on solar cell short circuit current, open circuit voltage, series and shunt resistances, electric power, fill factor and conversion efficiency are also studied. The study proved that with increase of illumination light intensity, the solar cell shunt resistances decreases whereas series resistance, short circuit current, open circuit voltage, electric power, fill factor and conversion efficiency increases.
One-dimensional study of both electronic and electrical parameters of a silicon solar cell in the presence or not of an electric field, a magnetic field, or an electromagnetic field does not take into account the grain size and the grain boundary recombination velocity. A three-dimensional study, on the contrary, takes those factors into account.However, the three-dimensional study poses the problem of the attenuation of the wave in the grain of the polycrystalline solar cell as well as the issue of finding the expressions of its components. This study aimed to solve these issues by considering radio waves, which are becoming more and more present in our environment via telecommunication masts.We first obtained the expressions of both the electric field and magnetic field in a grain of a polycrystalline silicon solar cell by solving the dispersion equation. Then we investigated the evolution of the radio wave into the grain by analyzing the behavior of the exponential coefficient that appeared in the expressions of both the electric field and the magnetic field. The study has shown that the attenuation of the radio wave can be neglected through the polycrystalline silicon solar grain and by extension through the polycrystalline silicon solar cell.
The aim of this work is to present a theoretical study of external magnetic field effect on a bifacial silicon solar cell's electrical parameters (peak power, fill factor and load resistance) using the J-V and P-V characteristics. After the resolution of the magneto transport equation and continuity equation of excess minority carriers in the base of the bifacial silicon solar cell under multispectral illumination, the photo-current density and the photovoltage are determined and the J-V and P-V curves are plotted. Using simultaneously the J-V and P-V curves, we determine, according to magnetic field intensity, the peak photocurrent density, the peak photovoltage, the peak electric power, the fill factor and the load resistance at the peak power point. The numerical data show that the solar cell's peak power decreases with magnetic field intensity while the fill factor and the load resistance increase.
The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier density in the base of the solar cell increases with the increase of the flux of photons that crosses the solar cell. One of the methods used to increase the flux of photon on the illuminated side of the solar cell is the intensification of the illumination light. However, the intensification of the light come with the increase of the energy released by thermalization, the collision between carriers, their braking due to the carriers concentration gradient electric field which lead to increase the temperature in the base of the solar cell. This work presents a 3-D study, of the effect of the temperature on the electronic parameters of a polycrystalline silicon solar under intense light illumination. The electronic parameters on which we analyze the temperature effect are: the mobility of solar cell carriers (electrons and holes), their diffusion coefficient, their diffusion length and their distribution in the bulk of the base. To study the effect of the temperature on electronic parameters, we take into account, the dependence of carriers (electrons and holes) mobility with the temperature (μ n, (T) μ p (T)). Then, the resolution of the continuity equation, which is a function of the carriers gradient electric field and the carriers mobility, leads to the expressions of the diffusion coefficient, the diffusion length, and the density of carriers which are function of the temperature. Then, we studied the effects of the temperature on the diffusion parameters in order to explain their effect on the behavior the carriers distribution in intermediate, short circuit and open circuit operating modes at several positions in the base depth. It appears through this study that the diffusion coefficient and the diffusion length decrease with the increase of 292 Smart Grid and Renewable Energy the temperature. We observe also that with the increase of the temperature, the density of carriers in the base of the solar cell in short circuit and open voltage operating modes increases. In intermediate operating mode, the density of carriers increases also with the temperature but it is function of the base depth.
This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell's electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D modelling study, the continuity equation is resolved. We determined the photocurrent density, the photovoltage and the solar cell's electric power which is a calibrated function of the junction recombination velocity (Sfu). Plots of solar cell's electric power with the junction recombination velocity give the maximum solar cell's electric power, Pm. Influence of various parameters such as grain size (g), grain boundaries recombination velocity (Sgb), wavelength (λ) and for different illumination modes on the solar cell's electric power is studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.