Adiponectin has antilipogenic and anti-inflammatory effects, while tumor necrosis factor ␣ (TNF-␣) reduces insulin sensitivity and has proinflammatory effects. We examined (1) the extent to which hypoadiponectinemia and TNF-␣ activation are features of nonalcoholic steatohepatitis (NASH) and (2) whether serum levels of these markers correlate with the severity of histological changes in 109 subjects with nonalcoholic fatty liver disease (NAFLD), including 80 with NASH and 29 with simple steatosis. By multivariate analysis, subjects with NASH had reduced adiponectin level and increased TNF-␣ and soluble TNF receptor 2 (sTNFR2)-but not leptin levels, compared with controls matched by age, sex, and body mass index; these differences were independent of the increased insulin resistance (by homeostasis model [HOMA-IR]) in NASH. When compared with simple steatosis, NASH was associated with lower adiponectin levels and higher HOMA-IR, but there were no significant differences in the levels of TNF-␣ and sTNFR2. The majority of subjects with steatohepatitis (77%) had adiponectin levels less than 10 g/mL and HOMA-IR greater than 3 units, but only 33% of those with pure steatosis had these findings. HOMA-IR and low serum adiponectin were also independently associated with increased grades of hepatic necroinflammation. In conclusion, hypoadiponectinemia is a feature of NASH independent of insulin resistance. Reduced adiponectin level is associated with more extensive necroinflammation and may contribute to the development of necroinflammatory forms of NAFLD. (HEPATOLOGY 2004;40:46 -54.)
One year after initial weight reduction, levels of the circulating mediators of appetite that encourage weight regain after diet-induced weight loss do not revert to the levels recorded before weight loss. Long-term strategies to counteract this change may be needed to prevent obesity relapse. (Funded by the National Health and Medical Research Council and others; ClinicalTrials.gov number, NCT00870259.).
In animal studies, increased amounts of triglyceride associated with skeletal muscle (mTG) correlate with reduced skeletal muscle and whole body insulin action. The aim of this study was to test this relationship in humans. Subjects were 38 nondiabetic male Pima Indians (mean age 28 +/- 1 years). Insulin sensitivity at physiological (M) and supraphysiological (MZ) insulin levels was assessed by the euglycemic clamp. Lipid and carbohydrate oxidation were determined by indirect calorimetry before and during insulin administration. mTG was determined in vastus lateralis muscles obtained by percutaneous biopsy. Percentage of body fat (mean 29 +/- 1%, range 14-44%) was measured by underwater weighing. In simple regressions, negative relationships were found between mTG (mean 5.4 +/- 0.3 micromol/g, range 1.3-1.9 micromol/g) and log10M (r = -0.53, P < or = 0.001), MZ (r = -0.44, P = 0.006), and nonoxidative glucose disposal (r = -0.48 and -0.47 at physiological and supraphysiological insulin levels, respectively, both P = 0.005) but not glucose or lipid oxidation. mTG was not related to any measure of adiposity. In multiple regressions, measures of insulin resistance (log10M, MZ, log10[fasting insulin]) were significantly related to mTG independent of all measures of obesity (percentage of body fat, BMI, waist-to-thigh ratio). In turn, all measures of obesity were related to the insulin resistance measures independent of mTG. The obesity measures and mTG accounted for similar proportions of the variance in insulin resistance in these relationships. The results suggest that in this human population, as in animal models, skeletal muscle insulin sensitivity is strongly influenced by local supplies of triglycerides, as well as by remote depots and circulating lipids. The mechanism(s) underlying the relationship between mTG and insulin action on skeletal muscle glycogen synthesis may be central to an understanding of insulin resistance.
Pan, D A.; Lillioja, S; Kriketos, A D.; Milner, M R.; Baur, L A.; Bogardus, C; Jenkins, A B.; and Storlien, L H., 1997, Skeletal muscle triglyceride levels are inversely related to insulin action, 983-988.Skeletal muscle triglyceride levels are inversely related to insulin action Skeletal muscle triglyceride levels are inversely related to insulin action Abstract Abstract In animal studies, increased amounts of triglyceride associated with skeletal muscle (mTG) correlate with reduced skeletal muscle and whole body insulin action. The aim of this study was to test this relationship in humans. Subjects were 38 nondiabetic male Pima Indians (mean age 28 ± 1 years). Insulin sensitivity at physiological (M) and supraphysiological (MZ) insulin levels was assessed by the euglycemic clamp. Lipid and carbohydrate oxidation were determined by indirect calorimetry before and during insulin administration. mTG was determined in vastus lateralis muscles obtained by percutaneous biopsy. Percentage of body fat (mean 29 ± 1%, range 14-44%) was measured by underwater weighing. In simple regressions, negative relationships were found between mTG (mean 5.4 ± 0.3 μmol/g, range 1.3-1.9 μmol/g) and log 10 M (r = −0.53, P ≤ 0.001), MZ (r = −0.44, P = 0.006), and nonoxidative glucose disposal (r = −0.48 and −0.47 at physiological and supraphysiological insulin levels, respectively, both P = 0.005) but not glucose or lipid oxidation. mTG was not related to any measure of adiposity. In multiple regressions, measures of insulin resistance (log 10 M, MZ, log 10 [fasting insulin]) were significantly related to mTG independent of all measures of obesity (percentage of body fat, BMI, waist-to-thigh ratio). In turn, all measures of obesity were related to the insulin resistance measures independent of mTG. The obesity measures and mTG accounted for similar proportions of the variance in insulin resistance in these relationships. The results suggest that in this human population, as in animal models, skeletal muscle insulin sensitivity is strongly influenced by local supplies of triglycerides, as well as by remote depots and circulating lipids. The mechanism(s) underlying the relationship between mTG and insulin action on skeletal muscle glycogen synthesis may be central to an understanding of insulin resistance.LFPIns, log fasting plasma insulin; M and MZ, h)w-dose (physiological) and high-dose (supraphysiological) in vivo insulin-mediated glucose disposal rates, respectively; mTG,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.