Background: Although whole brain radiation therapy (WBRT) provides palliation and prophylaxis, reduces local recurrence probability and improves overall survival, it is evident that WBRT is associated with neurocognitive deficits due to radiation induced damage of the hippocampus. Therefore, minimizing hippocampal dose to the least possible level is of high clinical relevance. In dual-arc conventional volumetric modulated arc therapy (dac-VMAT), the large irradiation field for whole brain planned target volume (PTV) requires a wide jaw opening in which substantial low dose volume to the hippocampus may be produced due to suboptimal multi-leaf collimator (MLC) movements. The present study investigates the potential of a radiation therapy technique with split-arc and reduced field size, namely split-arc partial-field volumetric modulated arc therapy (sapf-VMAT) to spare the hippocampus during WBRT. Methods: Computed tomography and magnetic resonance images of 20 patients with brain metastases were retrieved in this retrospective planning study. The hippocampus was manually delineated by single radiation oncologist strictly following the RTOG 0933 atlas definition. Plans delivering 30 Gy in 10 fractions were generated for each patient using dac-VMAT and sapf-VMAT. Dosimetric parameters from both techniques were compared by paired t-test. Results:The results demonstrated that radiation dose to the hippocampus was significantly reduced using sapf-VMAT relative to dac-VMAT plans. sapf-VMAT (7.86Gy, p = 0.001) had significantly lowered average D 100% compared to dac-VMAT (9.23 Gy). Decrease in hippocampus D max using sapf-VMAT (13.23 Gy, p = 0.001) was statistically significant when compared to dac-VMAT (16.33 Gy). The resulting mean dose to the hippocampus was 9.16 Gy for the for sapf-VMAT. Mean dose of sapf-VMAT was significantly lower than dac-VMAT (10.85 Gy, p < 0.05). In both eyes, sapf-VMAT demonstrated significantly lower D mean compared to dac-VMAT (p < 0.05). Whole brain PTV coverage was not compromised in both techniques. Conclusion: sapf-VMAT has demonstrated significant dose reduction to the hippocampus and both eyes compared to dac-VMAT.
Computed tomography (CT) has become more readily available for post-mortem examination, offering an alternative to cetacean cranial measurements obtained manually. Measurement error may result in possible variation in cranial morphometric analysis. This study aimed to evaluate the accuracy and reliability of cetacean cranial measurements obtained by CT three-dimensional volume rendered images (3DVRI). CT scans of 9 stranded cetaceans were performed. The acquired images were reconstructed using bone reconstruction algorithms. The reconstructed crania obtained by 3DVRI were visualized after excluding other body structures. Accuracy of cranial measurements obtained by CT 3DVRI was evaluated by comparing with that obtained by manual approach as standard of reference. Reproducibility and repeatability of cranial measurements obtained by CT 3DVRI were evaluated using intraclass correlation coefficient (ICC). The results demonstrated that cranial measurements obtained by CT 3DVRI yielded high accuracy (88.05%– 99.64%). High reproducibility (ICC ranged from 0.897 to 1.000) and repeatability (ICC ranged from 0.919 to 1.000 for operator 1 and ICC range from 0.768 to 1.000 for operator 2) were observed in cranial measurements obtained by CT 3DVRI. Therefore, cranial measurements obtained by CT 3DVRI could be considered as virtual alternative to conventional manual approach. This may help the development of a normative reference for current cranial maturity and discriminant analysis studies in cetaceans.
Due to the different craniocervical structures in humans and cetaceans, a standardised method assessing the normal craniocervical relationship in cetaceans is lacking, causing difficulties in defining the presence of atlanto-occipital dissociation (AOD) in cetaceans. The present study aimed to 1) describe a novel standardised method of determining the normal craniocervical relationships, and 2) define the 95% accuracy range of the normal craniocervical relationship in finless porpoises (genus Neophocaena), that allowed AOD diagnosis. Fifty-five out 83 stranded or by-caught finless porpoise carcasses were analyzed in term of their craniocervical relationship in dorsal-ventral and medial-lateral dimension, using postmortem computed tomography measurements. The normal craniocervical relationship in both dorsal-ventral (mean BD/OV: 0.87 ± 0.24 [2 SD]) and medial-lateral dimension (mean VR/VL: 0.98 ± 0.17 [2 SD]) was first defined. The 95% accuracy ranges of the normal craniocervical relationship in dorsal-ventral (0.63–1.11) and medial-lateral dimension (0.82–1.15) were proposed. The baseline ranges could facilitate AOD assessment, and provide an objective means of record for AOD related injury and death of cetaceans caused by anthropogenic trauma. The technique developed may be applied to live cetaceans with abnormal craniocervical relationship to aid diagnosis and guide corrective therapy.
Cetaceans have long been considered biologically adapted to suffer no adverse effects from diving-related tissue gas tension. However, increasing reports of gas embolism in cetaceans inhabiting European, Mediterranean and American waters have challenged the conventional understanding of marine mammal diving physiology. In human hyperbaric medicine, virtopsy techniques such as post-mortem computed tomography (PMCT) facilitate the visualization of gas embolism and could be performed adjunct to conventional autopsy. This research presents the first case of gas embolism identified in an East Asian finless porpoise inhabiting Asian waters. Massive gas embolic lesions were found in the liver, which had been compressing both the lungs and abdominal organs, and signs of pneumonia and parasitic infection were observed in both lungs. It is hypothesized that this porpoise might have been unable to expel in vivo gas bubbles from its circulation due to pulmonary dysfunction. Consequently, gas bubbles agglomerated in the liver, resulting in the development of gas embolic lesions. The findings of the present study provide insights into the occurrence of gas embolism in the East Asian finless porpoise, highlighting the potential of PMCT as a promising tool for the diagnosis of gas embolism in stranded cetaceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.