The effect of weld filler metal austenite to acicular ferrite transformation temperature on the residual stresses that arise during the gas metal arc welding of a low carbon steel has been examined using a finite element model. It was found that the stress levels in the weld can be tailored by the appropriate selection of the filler metal and compressive, near zero or tensile residual stresses produced. Reasonable agreement was obtained between the model and the stresses measured using neutron diffraction both in welds using conventional and low transformation temperature filler metal.
The Elastic Finite Element Method based on the inherent strain theory is used to predict the welding distortion of ship structures. In addition, a method to predict welding distortion of complex structures by using elastic FEM is presented. To evaluate the effectiveness of the proposed method, a typical case of a ship's structure is examined and the resulting welding distortion is compared to that obtained by using thermal elastic-plastic finite element method.Un análisis elástico de elementos finitos basado en la teoría de la deformación unitaria inherente es utilizado para predecir la distorsión causada por la soldadura en estructuras de barcos. Adicionalmente, se propone un nuevo método para predecir la distorsión de estructuras complejas. Los resultados obtenidos son luego comparados con aquellos obtenidos por medio de análisis termo-plástico de elementos finitos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.