This study aims to assess the impact of climate change on the water balance component of the Katar and Meki watersheds of the Central Rift Valley Lakes Basin, Ethiopia. The semi-distributed soil and water assessment tool hydrological model and multiple regional climate model outputs were used to assess climate change impacts on water balance components and stream flow. Future climate scenarios were developed under a representative concentration pathway (RCP 4.5 and 8.5) for the 2040s (2021–2050) and 2070s (2051–2080). The study found that future annual and seasonal rainfall will show increasing and decreasing trends but that they are statistically insignificant. Furthermore, future temperatures show a significant increase in the subbasins. For the applied scenarios, an increasing and decreasing trend of future rainfall and increased temperatures would decrease the water yield by 4.9–15.3% at the Katar subbasin and 6.7–7.4% at the Meki subbasin. Furthermore, annual water yields will increase in the range of 0.38–57.1% and 6.57–49.9% for the Katar and Meki subbasins, respectively. The findings of this study will help basin planners, policymakers, and water resource managers develop appropriate adaptation strategies to mitigate the negative effects of climate change in the rift-bound lake system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.