The utilization of nanomaterials as efficient delivery systems to specific metabolic sites is essential for harnessing the utmost therapeutic potency of drugs leading to a tremendous quest in the design of efficient drug delivery systems. In this present study, appropriate level of quantum chemical calculation by applying DFT/ωB97XD/6‐311G+ (d, p) method was utilized to investigate the effectiveness of C12N12, and C12P12 nanocages as delivery systems for alendronate drug. The properties of an ideal nano‐delivery system with regards to potential constraints during fabrication are being considered. The highest adsorption energy in C12N12 was observed in interaction site CN_CH −7.355 eV while interaction site CP_CH was observed with the highest Eads −3.518 eV for C12P12. These interaction sites in studied nanocages are suitable for the delivery of alendronate to target site. Our results for energy gap show that studied nanocages are good for the delivery of alendronate drug. The natural bond orbital analysis confirms nanocages and various interactions to be stable. Non‐covalent interaction and quantum theory of atoms in molecules were used to probe the effectiveness of the nanomaterials as delivery materials and confirms strong interaction between drug alendronate and nanocages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.