Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated hum...
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
BackgroundDiarrheal diseases are responsible for high level of morbidity and mortality, particularly in children below 5 years. Salmonella and Shigella spp. are pathogenic microbes responsible for the major diarrheal associated mortality. The purpose of this study was to determine the prevalence, factors associated with Salmonella and Shigella isolates infections and their antimicrobial susceptibility patterns among diarrheic children aged below 5 years attending BRGH and GRH, Ethiopia.MethodsA health institution based cross-sectional study was conducted from April to July 2016. One stool samples was collected from 422 diarrheic children under the ages of five and were cultured on to Hektoen Enteric (HE) and Salmonella-Shigella agar. Isolation identification of the Salmonella and Shigella isolates were conducted using standard bacteriological methods. Antibiotic susceptibility was done by Kirby–Bauer disk diffusion method. The isolates were defined as multidrug resistant if it was resistant to two or more antimicrobial agents. Descriptive statistics were employed and logistic regression models were constructed to determine factors associated with Shigella/Salmonella prevalence.ResultsThe prevalence of Salmonella and Shigella isolates were 6.9 and 4.3%, respectively. Children aged between 1 to 3 years were significantly associated with Salmonella infection [AOR = 19.08, 95% CI (2.68–135.86)]. The odd of prevalence of Salmonella/Shigella isolates was significantly associated with absence of latrine, absence of hand washing after latrine, and in unimmunized children in adjusted odd ratio. Unimproved water sources and hand washing before meal had also higher odd of prevalence although the difference was not significant. All Salmonella and Shigella isolates were resistant to amoxicillin (100%). In addition, all Shigella isolates were completely resistant to chloramphenicol, and tetracycline, and were multidrug resistant. However, all Salmonella and Shigella isolates were susceptible to ciprofloxacin and ceftriaxone.ConclusionThere was a relatively low prevalence of Salmonella and Shigella species in the study areas and were significantly associated with lack of personal hygiene and environmental sanitation. There were also higher drug resistance and multidrug resistant pattern. Personal hygiene and environmental sanitation, including access to latrine and supply of safe drinking water are suggested. Checking susceptibilities of Shigella and Salmonella isolates causing diarrhea is also suggested.
Corynelia spp. are ascomycetes belonging to the order Coryneliales and are thought to be obligate parasites of trees in the Podocarpaceae. The aims of this study were to determine the disease intensity of Corynelia infection on Podocarpus falcatus in Ethiopian forests and verify the identity of Corynelia spp. from Ethiopia and other countries using morphological and molecular methods. Disease surveys were conducted in P. falcatus forest areas at Adaba-Dodola, Bushoftu, Menagesha, Shashamane and Wondo Genet in Ethiopia between 2009 and 2011, and samples were collected for morphological and molecular studies. Additional dried specimens morphologically collected as C. uberata, C. portoricensis and C. tropica from Podocarpus species in Kenya, South Africa, Puerto Rico and New Zealand were also characterized. Morphologically, the South African specimen (F-006479) of C. uberata had significantly larger ascospores when compared with the other specimens. There was a high sequence similarity (99-100%) in the internal transcribed spacer and 5.8S (ITS-5.8S) region among the studied C. uberata sequences. Cloning and amplification of the insert spanning partial small ribosomal unit (SSU) and ITS-5.8S regions of ribosomal DNA validated the unidentified ITS-5.8S region as the sequence of C. uberata by inferring the reference sequence of SSU rDNA of C. uberata in GenBank. Both neighbour-joining and/or maximum parsimony methods placed ITS-5.8S and SSU rDNA sequences of Corynelia spp. at the basal position of the clade Eurotiomycetidae. C. uberata was found to be a potential pathogen on leaves, fruits and young stems of P. falcatus in Ethiopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.