The gastrointestinal tract (GI) is a crucial part of the body for growth and development and its dysregulation can lead to several diseases with detrimental effects. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. Organoids are three-dimensional self-organizing and self-renewing structures that are composed of a cluster of different cells in vitro that resemble their organ of origin in architecture and function. Over recent years, organoids have been increasingly used to study developmental biology, disease progression, i.e., cancer, tissue engineering and regenerative medicine and other biological processes. Owing to their complex nature and ability to retain the morphological and molecular patterns of their tissue-of-origin, they have great potential as alternative tools/models for drug screening, development and biomarker discovery. Using a species with similar genetic homology to humans as a source of organoids, such as the porcine model may offer huge translational relevance. This review focuses on the culture and establishment of porcine organoid units and their potential use and application as in vitro models to further the science of drug discovery, by overcoming current limitations of established two- and three-dimensional models. It also highlights the translational application of using porcine organoids as a model of different disease contexts.
The growing number of patients requiring liver transplantation for chronic liver disease cannot be currently met due to a shortage in donor tissue. As such, alternative tissue engineering approaches combining the use of acellular biological scaffolds and different cell populations (hepatic or progenitor) are being explored to augment the demand for functional organs. Our goal was to produce a clinically relevant sized scaffold from a sustainable source within 24 hours, whilst preserving the extra cellular matrix (ECM) to facilitate cell repopulation at a later stage. Whole porcine livers underwent perfusion de-cellularisation via the hepatic artery and hepatic portal vein using a combination of saponin, sodium deoxycholate (SOC) and deionised water washes resulting in an acellular scaffold with an intact vasculature and preserved ECM. Molecular and immuno-histochemical analysis (collagen I and IV and laminin) showed complete removal of any DNA material, together with excellent retention of glycosaminoglycans and collagen. FTIR analysis showed both absence of nuclear material and removal of any detergent residue, which was successfully achieved after additional ethanol gradient washes.Samples of the de-cellularised scaffold were assessed for cytotoxicity by seeding with porcine adipose derived mesenchymal stem cells in vitro, these cells over a 10 day period showed attachment and proliferation. Perfusion of the vascular tree with contrast media followed by CT imaging showed an intact vascular network. In vivo implantation of whole intact non-seeded livers, into a porcine model (as auxiliary graft) showed uniform perfusion macroscopically and histologically. Using this method, it is possible to create an acellular, clinically sized, liver scaffold with intact vasculature in less than 24 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.