The gastrointestinal tract (GI) is a crucial part of the body for growth and development and its dysregulation can lead to several diseases with detrimental effects. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. Organoids are three-dimensional self-organizing and self-renewing structures that are composed of a cluster of different cells in vitro that resemble their organ of origin in architecture and function. Over recent years, organoids have been increasingly used to study developmental biology, disease progression, i.e., cancer, tissue engineering and regenerative medicine and other biological processes. Owing to their complex nature and ability to retain the morphological and molecular patterns of their tissue-of-origin, they have great potential as alternative tools/models for drug screening, development and biomarker discovery. Using a species with similar genetic homology to humans as a source of organoids, such as the porcine model may offer huge translational relevance. This review focuses on the culture and establishment of porcine organoid units and their potential use and application as in vitro models to further the science of drug discovery, by overcoming current limitations of established two- and three-dimensional models. It also highlights the translational application of using porcine organoids as a model of different disease contexts.
Alternative pathway NF-κB signalling regulates susceptibility towards developing inflammatory bowel disease (IBD), colitis-associated cancer and sepsis-associated intestinal epithelial cell apoptosis and shedding. However, the cell populations responsible for the perturbed alternative pathway NF-κB signalling in intestinal mucosal pathology remain unclear. In order to investigate the contribution of the epithelial compartment, we have tested whether NF-κB2 regulated transcription in intestinal epithelial cells controls the intestinal epithelial response to cytokines that are known to disrupt intestinal barrier permeability. Enteroids were generated from the proximal, middle and distal regions of small intestine (SI) from C57BL/6J wild-type mice and displayed region-specific morphology that was maintained during sub-culture. Enteroids treated with 100 ng/mL TNF were compared with corresponding regions of SI from C57BL/6J mice treated systemically with 0.33 mg/kg TNF for 1.5 h. TNF-induced apoptosis in all regions of the intestine in vitro and in vivo but resulted in Paneth cell degranulation only in proximal tissue-derived SI and enteroids. TNF also resulted in increased enteroid sphericity (quantified as circularity from two-dimensional bright field images). This response was dose and time-dependent and correlated with active caspase-3 immunopositivity. Proximal tissue-derived enteroids generated from Nfκb2−/− mice showed a significantly blunted circularity response following the addition of TNF, IFNγ, lipopolysaccharide (LPS) activated C57BL/6J-derived bone marrow-derived dendritic cells (BMDC) and secreted factors from LPS-activated BMDCs. However, Nfκb1−/− mouse-derived enteroids showed no significant changes in response to these stimuli. In conclusion, the selection of SI region is important when designing enteroid studies as region-specific identity and response to stimuli such as TNF are maintained in culture. Intestinal epithelial cells are at least partially responsible for regulating their own fate by modulating NF-κB2 signalling in response to stimuli known to be involved in multiple intestinal and systemic diseases. Future studies are warranted to investigate the therapeutic potential of intestinal epithelial NF-κB2 inhibition.
The growing number of patients requiring liver transplantation for chronic liver disease cannot be currently met due to a shortage in donor tissue. As such, alternative tissue engineering approaches combining the use of acellular biological scaffolds and different cell populations (hepatic or progenitor) are being explored to augment the demand for functional organs. Our goal was to produce a clinically relevant sized scaffold from a sustainable source within 24 hours, whilst preserving the extra cellular matrix (ECM) to facilitate cell repopulation at a later stage. Whole porcine livers underwent perfusion de-cellularisation via the hepatic artery and hepatic portal vein using a combination of saponin, sodium deoxycholate (SOC) and deionised water washes resulting in an acellular scaffold with an intact vasculature and preserved ECM. Molecular and immuno-histochemical analysis (collagen I and IV and laminin) showed complete removal of any DNA material, together with excellent retention of glycosaminoglycans and collagen. FTIR analysis showed both absence of nuclear material and removal of any detergent residue, which was successfully achieved after additional ethanol gradient washes.Samples of the de-cellularised scaffold were assessed for cytotoxicity by seeding with porcine adipose derived mesenchymal stem cells in vitro, these cells over a 10 day period showed attachment and proliferation. Perfusion of the vascular tree with contrast media followed by CT imaging showed an intact vascular network. In vivo implantation of whole intact non-seeded livers, into a porcine model (as auxiliary graft) showed uniform perfusion macroscopically and histologically. Using this method, it is possible to create an acellular, clinically sized, liver scaffold with intact vasculature in less than 24 hours.
Human pluripotent stem cells are a tremendous tool to model early human development and disease including their use in the in vitro generation of blood cell fates. Hematopoietic progenitors and stem cells are the primary source of blood and the immune system from early development to adulthood and arise through successive waves of hemogenic mesoderm either in the yolk sac or embryo proper. Researchers have long sought a tractable human model for observing and distinguishing these waves of hematopoiesis in the dish for human developmental and disease modeling. Here we report a high-efficiency method for differentiating human pluripotent stem cells into an aorta-gonad-mesonephros-like definitive hemogenic mesoderm capable of giving rise to definitive hematopoietic progenitor and stem cells. The hematopoietic progenitor and stem cells exhibit robust multilineage in vitro colony forming potential. Gene expression analysis and single cell sequencing strongly support the developmental timing and notion that the pluripotent stem cell derived hematopoietic stem and progenitors are strikingly like bone fide hematopoietic stem cells. The hematopoietic progenitors can be subsequently differentiated into polarized macrophage and T-cells in vitro. Minimal silencing was observed upon differentiation of the pluripotent stem cells to hematopoietic lineages when conducting gene editing. Finally, upon engraftment into immunodeficient animals the hematopoietic progenitors and stem cells differentiate into multiple lineages including B-cells, T-cells, NK-cells, and monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.