Recent research shows ever growing interest in the potential applications of memristive devices. Among the many proposed fields, sensing is one of the most interesting as it could lead to unprecedented sensor density and ubiquity in electronic systems. In this paper, a framework for efficient gas detection using mem-ristor crossbar array is proposed and analysed. A novel Verilog-A based memristor model that emulates the gas sensing behaviour of doped metal oxides is developed for simulation and integration with design automation tools. Using this model, we propose and analyse three different gas detection structures based on array of memristor-based sensors. Gas presence together with some of its properties can be detected using resistance changes and spatial information from one or group of memristive sensors. Our simulation results show that depending on the organisation of the memristive elements and the sensing method, the response of the sensor varies providing a broader design space for future designers. For instance, with a 8 × 8 memristor sensor array, there is a ten times improvement in the accuracy of the sensor's response when compared with a single memristor sensor but at the expense of extra area overhead.
We present novel techniques for realising reliable low overhead logic functions and more complex systems based on the switching characteristics of memristors. Firstly, we show that memristive circuits have inherent properties for realising multiple valued MIN-MAX operations over the post algebra. We then present an efficient hybrid 1T-4M logic architecture for dual XOR/AND and XNOR/OR functionality, which can be seamlessly integrated with the existing CMOS technology. Although memristors are usually considered to operate at lower frequencies, however, recent advances in technology show their potentiality at high frequencies. To this end, we also explore the effects of high frequencies on their performance and thereby propose reliable high frequency design techniques based on our 1T-4M architectures. Experimental results, based on the design of full adders and multipliers over GF, show that the proposed designs require significantly lower power and overhead while maintaining reliable performance at low as well as at high frequencies compared to the existing techniques.
We present a low complexity high performance memristive multifunction logic architecture for low power high frequency operations in a single cycle, which does not require additional control input/logic and multicycle setup/operation. It can be seamlessly integrated with the existing CMOS technology with just 1T-4M design and without additional overhead. Our technique can realise both XOR/AND or XNOR/OR operations simultaneously. Experimental results show that our technique significantly outperforms both CMOS and existing hybrid memristor-CMOS based designs in terms of chip area, power consumptions, and reliable performance especially at high frequencies. With the help of full adder designs, we also demonstrate that the multifunctionality of our architecture can result in highly compact designs.
Readers can read, redistribute and reuse the articles for free, as long as they cite the publication details properly and do not use for any commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.