Fog-radio access networks (F-RANs) alleviate fronthaul delays for cellular networks as compared to their cloud counterparts. This allows them to be suitable solutions for networks that demand low propagation delays. Namely, they are suitable for millimeter wave (mmWave) operations that suffer from short propagation distances and possess a poor scattering environment (low channel ranks). The F-RAN here is comprised of fog nodes that are collocated with radio remote heads (RRHs) to provide local processing capabilities for mobile station (MS) terminals. These terminals demand various network functions (NFs) that correspond to different service requests. Now, provisioning these NFs on the fog nodes also yields service delays due to the requirement for service migration from the cloud, i.e., offloading to the fog nodes. One solution to reduce this service delay is to provide cached copies of popular NFs in advance. Hence, it is critical to study function popularity and allow for content caching at the F-RAN. This is further a necessity given the limited resources at the fog nodes, thus requiring efficient resource management to enhance network capacity at reduced power and cost penalty. This paper proposes novel solutions that allocate popular NFs on the fog nodes to accelerate services for the terminals, namely, the clustered and distributed caching methods. The two methods are analyzed and compared against the baseline uncached provisioning schemes in terms of service delay, energy consumption, and cost.
No abstract
Machine learning algorithms represent the intelligence that controls many information systems and applications around us. As such, they are targeted by attackers to impact their decisions. Text created by machine learning algorithms has many types of applications, some of which can be considered malicious especially if there is an intention to present machine-generated text as human-generated. In this paper, we surveyed major subjects in adversarial machine learning for text processing applications. Unlike adversarial machine learning in images, text problems and applications are heterogeneous. Thus, each problem can have its own challenges. We focused on some of the evolving research areas such as: malicious versus genuine text generation metrics, defense against adversarial attacks, and text generation models and algorithms. Our study showed that as applications of text generation will continue to grow in the near future, the type and nature of attacks on those applications and their machine learning algorithms will continue to grow as well. Literature survey indicated an increasing trend in using pre-trained models in machine learning. Word/sentence embedding models and transformers are examples of those pre-trained models. Adversarial models may utilize same or similar pre-trained models as well. In another trend related to text generation models, literature showed effort to develop universal text perturbations to be used in both black-and whitebox attack settings. Literature showed also using conditional GANs to create latent representation for writing types. This usage will allow for a seamless lexical and grammatical transition between various writing styles. In text generation metrics, research trends showed developing successful automated or semi-automated assessment metrics that may include human judgement. Literature showed also research trends of designing and developing new memory models that increase performance and memory utilization efficiency without validating real-time constraints. Many research efforts evaluate different defense model approaches and algorithms. Researchers evaluated different types of targeted attacks, and methods to distinguish human versus machine generated text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.