The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the “Internet of Things.” Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect.
We propose a technique for the automated detection of malignant masses in screening mammography. The technique is based on the presence of concentric layers surrounding a focal area with suspicious morphological characteristics and low relative incidence in the breast region. Mammographic locations with high concentration of concentric layers with progressively lower average intensity are considered suspicious deviations from normal parenchyma. The multiple concentric layers (MCLs) technique was trained and tested using the craniocaudal views of 270 mammographic cases with biopsy proven malignant masses from the digital database of screening mammography. One-half of the available cases were used for optimizing the parameters of the detection algorithm. The remaining cases were used for testing. During testing, malignant masses were detected with 92%, 88%, and 81% sensitivity at 5.4, 2.4, and 0.6 false positive marks per image. Testing on 82 normal screening mammograms showed a false positive rate of 5.0, 1.7, and 0.2 marks per image at the previously reported operating points. Furthermore, additional evaluation on 135 benign cases produced a significantly lower detection rate for benign masses (61.6%, 58.3%, and 43.7% at 5.1, 2.8, and 1.2 false positives per image, respectively). Overall, MCL is a promising computer-assisted detection strategy for screening mammograms to identify malignant masses while maintaining the detection rate of benign masses considerably lower.
Internet of Things (IoT) is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The IoT for Smart Cities has many different domains and draws upon various underlying systems for its operation. In this paper, we provide a holistic coverage of the Internet of Things in Smart Cities. We start by discussing the fundamental components that make up the IoT based Smart City landscape followed by the technologies that enable these domains to exist in terms of architectures utilized, networking technologies used as well as the Artificial Algorithms deployed in IoT based Smart City systems. This is then followed up by a review of the most prevalent practices and applications in various Smart City domains. Lastly, the challenges that deployment of IoT systems for smart cities encounter along with mitigation measures.
The advancements in neural networks and the on-demand need for accurate and near real-time Speech Emotion Recognition (SER) in human–computer interactions make it mandatory to compare available methods and databases in SER to achieve feasible solutions and a firmer understanding of this open-ended problem. The current study reviews deep learning approaches for SER with available datasets, followed by conventional machine learning techniques for speech emotion recognition. Ultimately, we present a multi-aspect comparison between practical neural network approaches in speech emotion recognition. The goal of this study is to provide a survey of the field of discrete speech emotion recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.