Information theoretic similarity metrics, including mutual information, have been widely and successfully employed in multimodal biomedical image registration. These metrics are generally based on the Shannon-Boltzmann-Gibbs definition of entropy. However, other entropy definitions exist, including generalized entropies, which are parameterized by a real number. New similarity metrics can be derived by exploiting the additivity and pseudoadditivity properties of these entropies. In many cases, use of these measures results in an increased percentage of correct registrations. Results suggest that generalized information theoretic similarity metrics, used in conjunction with other measures, including Shannon entropy metrics, can improve registration performance.
The K distribution is an accurate model for ultrasonic backscatter. A neural approach is developed to estimate K distribution parameters. Accuracy and consistency of the estimates from simulated K and envelope data compare favorably with other techniques. Neural networks can potentially be used as a complementary technique for tissue characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.