To fight infections, macrophages undergo a metabolic shift whereby increased glycolysis fuels antimicrobial inflammation and killing of pathogens. Here we demonstrate that the pathogen Candida albicans turns this metabolic reprogramming into an Achilles' heel for macrophages. During Candida-macrophage interactions intertwined metabolic shifts occur, with concomitant upregulation of glycolysis in both host and pathogen setting up glucose competition. Candida thrives on multiple carbon sources, but infected macrophages are metabolically trapped in glycolysis and depend on glucose for viability: Candida exploits this limitation by depleting glucose, triggering rapid macrophage death. Using pharmacological or genetic means to modulate glucose metabolism of host and/or pathogen, we show that Candida infection perturbs host glucose homeostasis in the murine candidemia model and demonstrate that glucose supplementation improves host outcomes. Our results support the importance of maintaining glucose homeostasis for immune cell survival during Candida challenge and for host survival in systemic infection.
Multipotent mesenchymal stromal cells (MSCs) ameliorate a wide range of diseases in preclinical models, but the lack of clarity around their mechanisms of action has impeded their clinical utility. The therapeutic effects of MSCs are often attributed to bioactive molecules secreted by viable MSCs. However, we found that MSCs underwent apoptosis in the lung after intravenous administration, even in the absence of host cytotoxic or alloreactive cells. Deletion of the apoptotic effectors BAK and BAX prevented MSC death and attenuated their immunosuppressive effects in disease models used to define MSC potency. Mechanistically, apoptosis of MSCs and their efferocytosis induced changes in metabolic and inflammatory pathways in alveolar macrophages to effect immunosuppression and reduce disease severity. Our data reveal a mode of action whereby the host response to dying MSCs is key to their therapeutic effects; findings that have broad implications for the effective translation of cell-based therapies.
The yeast Candida albicans colonizes several sites in the human body and responds to metabolic signals in commensal and pathogenic states. The yeast-tohyphae transition correlates with virulence, but how metabolic status is integrated with this transition is incompletely understood. We used the putative mitochondrial fission inhibitor mdivi-1 to probe the crosstalk between hyphal signaling and metabolism. Mdivi-1 repressed C. albicans hyphal morphogenesis, but the mechanism was independent of its presumed target, the mitochondrial fission GTPase Dnm1. Instead, mdivi-1 triggered extensive metabolic reprogramming, consistent with metabolic stress, and reduced endogenous nitric oxide (NO) levels. Limiting endogenous NO stabilized the transcriptional repressor Nrg1 and inhibited the yeast-to-hyphae transition. We establish a role for endogenous NO signaling in C. albicans hyphal morphogenesis and suggest that NO regulates a metabolic checkpoint for hyphal growth. Furthermore, identifying NO signaling as an mdivi-1 target could inform its therapeutic applications in human diseases.
Hypermutable Pseudomonas aeruginosa isolates (hypermutators) have been identified in patients with cystic fibrosis (CF) and are associated with reduced lung function. Hypermutators display a greatly increased mutation rate and an enhanced ability to become resistant to antibiotics during treatment. Their prevalence has been established among patients with CF, but it has not been determined for patients with CF in Australia. This study aimed to determine the prevalence of hypermutable P. aeruginosa isolates from adult patients with CF from a health care institution in Australia and to characterize the genetic diversity and antibiotic susceptibility of these isolates. A total of 59 P. aeruginosa clinical isolates from patients with CF were characterized. For all isolates, rifampin (RIF) mutation frequencies and susceptibility to a range of antibiotics were determined. Of the 59 isolates, 13 (22%) were hypermutable. Whole-genome sequences were determined for all hypermutable isolates. Core genome polymorphisms were used to assess genetic relatedness of the isolates, both to each other and to a sample of previously characterized P. aeruginosa strains. Phylogenetic analyses showed that the hypermutators were from divergent lineages and that hypermutator phenotype was mostly the result of mutations in mutL or, less commonly, in mutS. Hypermutable isolates also contained a range of mutations that are likely associated with adaptation of P. aeruginosa to the CF lung environment. Multidrug resistance was more prevalent in hypermutable than nonhypermutable isolates (38% versus 22%). This study revealed that hypermutable P. aeruginosa strains are common among isolates from patients with CF in Australia and are implicated in the emergence of antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.